Slow-growth approach

From VASP Wiki

The free-energy profile along a geometric parameter can be scanned by an approximate slow-growth approach[1]. In this method, the value of is linearly changed from the value characteristic for the initial state (1) to that for the final state (2) with a velocity of transformation . The resulting work needed to perform a transformation can be computed as:

In the limit of infinitesimally small , the work corresponds to the free-energy difference between the the final and initial state. In the general case, is the irreversible work related to the free energy via Jarzynski's identity[2]:

Note that calculation of the free-energy via this equation requires averaging of the term over many realizations of the transformation. Detailed description of the simulation protocol that employs Jarzynski's identity can be found in reference [3].


References