Thermodynamic integration with harmonic reference
The Helmholtz free energy () of a fully interacting system (1) can be expressed in terms of that of system harmonic in Cartesian coordinates (0,) as follows
- Failed to parse (Conversion error. Server ("cli") reported: "[INVALID]"): {\displaystyle A_{1} = A_{0,<math>\mathbf{x}} } + \Delta A_{0,\rightarrow 1}
</math> where Failed to parse (Conversion error. Server ("cli") reported: "[INVALID]"): {\displaystyle \Delta A_{0,<math>\mathbf{x}} \rightarrow 1}</math> is anharmonic free energy. The latter term can be determined by means of thermodynamic integration (TI)
- Failed to parse (Conversion error. Server ("cli") reported: "[INVALID]"): {\displaystyle \Delta A_{0,<math>\mathbf{x}} \rightarrow 1} = \int_0^1 d\lambda \langle V_1 -V_{0,} \rangle_\lambda
</math> with being the potential energy of system , is a coupling constant and is the NVT ensemble average of the system driven by the Hamiltonian
- Failed to parse (Conversion error. Server ("cli") reported: "[INVALID]"): {\displaystyle \mathcal{H}_\lambda = \lambda \mathcal{H}_1 + (1-\lambda)\mathcal{H}_{0,<math>\mathbf{x}} }
</math>
Free energy of harmonic reference system within the quasi-classical theory writes
with the electronic free energy for the configuration corresponding to the potential energy minimum with the atomic position vector , the number of vibrational degrees of freedom , and the angular frequency of vibrational mode . The