Nose-Hoover-chain thermostat

From VASP Wiki
Revision as of 14:21, 17 April 2023 by Tbucko (talk | contribs)

The standard Nose Hoover suffers from well known issues, such as the ergodicity violation in the case of simple harmonic oscillator. As proposed by Martyna and Klein, these problems can be solved by using multiple Nose Hoover thermostats connected in a chain. Although the underlining dynamics is non-Hamiltonian, the corresponding equations of motion conserve the following energy term:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mathcal{H'} = \mathcal{H}(\bold{r},\bold{p}) + \sum\limits_{j=1}^{M} \frac{p_{\eta_j}^2}{2Q_j} + 3Nk_{B} T \eta_1 + k_{B} T \sum\limits_{j=2}^{M} \eta_j }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mathcal{H}(\bold{r},\bold{p})} is the Hamiltonian of the physical system, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): M and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): N are the numbers of thermostats and atoms in the cell, respectively, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \eta_{j}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle p_{\eta_j}} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle Q_{j}} are the position, momentum, and mass-like parameter associated with the thermostat Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): j .

The number of thermostats is controlled by the flag NHC_NCHAINS. Typically, this flag is set to a value between 1 and 5, the maximal allowed value is 20. In the special case of NHC_NCHAINS=0, thermostat is switched off, leading to a MD in microcanonical ensemble. Another special case of NHC_NCHAINS=1 corresponds to the standard Nose-Hoover thermostat.

The only thermostat parameter is NHC_PERIOD, corresponding to a characteristic time scale (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): \tau ) of the system in time steps. This variable is used to setup the mass-like variables via the relations:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle Q_1 = 3 N k_{B} T \tau^2 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle Q_j = k_{B} T \tau^2; \; \; \; j=2,\dots,M }


NHC_NRESPA


NHC_NS