LSELFENERGY
LSELFENERGY = [logical]
Default: LSELFENERGY = .FALSE.
Description: Controls whether the frequency-dependent self-energy is calculated or not.
If LSELFENERGY=.FALSE., QP shifts are evaluated. This is the default behavior.
If LSELFENERGY=.TRUE., the frequency dependent self-energy is evaluated and printed to vasprun.xml. An example output looks like the following:
<varray name="selfenergy" > <v> -150.00000000 -25.40060536 0.24429448 </v> <v> -149.70000000 -25.40600800 0.24673910 </v> <v> -149.40000000 -25.41141065 0.24918372 </v> <v> -149.10000000 -25.41681330 0.25162834 </v> <v> -148.80000000 -25.42221682 0.25406890 </v> <v> -148.50000000 -25.42762671 0.25647992 </v> <v> -148.20000000 -25.43303731 0.25888834 </v>
If quartic-scaling GW algorithms are selected, e.g. ALGO=EVGW0, the first column corresponds to points on the real-frequency axis. The second and third column are the real and imaginary parts of the self-energy at a given k-point and band index. In this case the evaluation of QP shifts is also bypassed and a small set of self-energy points are printed to OUTCAR instead, similar to the following output
calculating selfenergy CALC_SELFENERGY_LINEAR between w=-150.00 150.00 k-point 1 : 0.0000 0.0000 0.0000 band No. band energies occupation 1 -11.7125 2.00000 selfenergy along real axis -150.0000000 -25.4006054 0.2442945 -147.0000000 -25.4546849 0.2685030 -144.0000000 -25.5088867 0.2923888 -141.0000000 -25.5724017 0.3182992 -138.0000000 -25.6566991 0.3488243
For low-scaling GW algorithms, the QP-energies are evaluated and printed to OUTCAR. In contrast, the vasprun.xml file now contains the self-energy on the imaginary frequency axis for the points selected by the Minimax routines.[1]
<varray name="selfenergy along imaginary axis" > <v> 0.1570801806644298 -23.7971327349915711 -0.0179645094529067</v> <v> 0.4718033117773284 -23.7968260788831572 -0.0537856829291801</v> <v> 0.8108804505648752 -23.7966749072893577 -0.0932103588740998</v> <v> 1.3058951128526406 -23.7949927690568188 -0.1482973553314607</v> <v> 2.1616482542623916 -23.7921058303676887 -0.2470758790247204</v> <v> 3.6372262687376478 -23.7825873053684020 -0.4111711809933788</v> <v> 6.1572524458284397 -23.7562330026939037 -0.6862644804414386</v> <v> 10.4458809010631466 -23.6861995575805615 -1.1139887498173913</v> <v> 17.7373281646108936 -23.5154602832639554 -1.7122889854756296</v> <v> 30.1392107400380986 -23.1716399068676573 -2.3599264180626154</v> <v> 51.2816820975773950 -22.6679255500786283 -2.7462077343732290</v> <v> 87.5780737595646173 -22.2199967867212642 -2.6063639556025358</v> <v> 151.1768278275650630 -22.0329848780527975 -2.0630479642536832</v> <v> 269.5184760634006125 -22.0597709090896785 -1.4098946458330412</v> <v> 534.4278992221115914 -22.1521338396994736 -0.8036610810760945</v> <v> 1756.7272624180855018 -22.2172782384523479 -0.2601414825403291</v> </varray>
Related tags and articles
- for a practical guide to GW calculations
- ALGO for response functions and RPA calculations
- LFINITE_TEMPERATURE finite temperature formalism
- NOMEGA number of real or imaginary frequency points