Category:Exchange-correlation functionals
In the KS formulation of DFT[1][2], the total energy is given by
where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the electrons-nuclei attraction energy, the classical Coulomb electron-electron repulsive energy, the exchange-correlation energy and the nuclei-nuclei repulsion energy, respectively. The orbitals and the electron density that are used to evaluate are obtained by solving self-consistently the KS equations
The only terms in and in the KS equations that are not known exactly are the exchange-correlation energy functional and potential . Therefore, the accuracy of the calculated properties depends mainly on the approximations used for and . Several hundreds of approximations for the exchange and correlation have been proposed[3]. They can be classified into several types, like the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, and hybrid. Functionals that include van der Waals corrections have also been proposed. More details on the different types of approximations available in VASP and how to use them can be found in the pages and subcategories listed below.
How to
- Semilocal functionals:
- Hybrids: LHFCALC, AEXX, HFSCREEN and list of hybrid functionals
- DFT+U: LDAU and LDAUTYPE
- Atom-pairwise methods for van der Waals interactions (selected with the IVDW tag):
- Methods from Grimme et al.:
- Methods from Tkatchenko, Scheffler et al.:
- dDsC dispersion correction[15][16]
- DFT-ulg[17]
- Nonlocal vdW-DF functionals for van der Waals interactions: LUSE_VDW and IVDW_NL
References
- ↑ P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- ↑ W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- ↑ https://libxc.gitlab.io/functionals/
- ↑ S. Grimme, J. Comput. Chem. 27, 1787 (2006).
- ↑ S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).
- ↑ S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
- ↑ E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme, J. Chem. Phys. 150, 154122 (2019).
- ↑ A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
- ↑ T. Bučko, S. Lebègue, J. Hafner, and J. G. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)
- ↑ T. Bučko, S. Lebègue, J. G. Ángyán, and J. Hafner, J. Chem. Phys. 141, 034114 (2014).
- ↑ a b A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
- ↑ A. Ambrosetti, A. M. Reilly, and R. A. DiStasio Jr., J. Chem. Phys. 140, 018A508 (2014).
- ↑ T. Gould and T. Bučko, C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1–6 of the Periodic Table, J. Chem. Theory Comput. 12, 3603 (2016).
- ↑ T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations, J. Chem. Theory Comput. 12, 5920 (2016).
- ↑ S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. 134, 044117 (2011).
- ↑ S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).
- ↑ H. Kim, J.-M. Choi, and W. A. Goddard, III, J. Phys. Chem. Lett. 3, 360 (2012).
Subcategories
This category has the following 5 subcategories, out of 5 total.
Pages in category "Exchange-correlation functionals"
The following 118 pages are in this category, out of 118 total.
B
D
L
- LASPH
- LDAU
- LDAUJ
- LDAUL
- LDAUPRINT
- LDAUTYPE
- LDAUU
- LEXCH
- LFOCKACE
- LFOCKAEDFT
- LHFCALC
- LIBMBD ALPHA
- LIBMBD C6AU
- LIBMBD K GRID
- LIBMBD K GRID SHIFT
- LIBMBD MBD A
- LIBMBD MBD BETA
- LIBMBD METHOD
- LIBMBD N OMEGA GRID
- LIBMBD PARALLEL MODE
- LIBMBD R0AU
- LIBMBD TS D
- LIBMBD TS SR
- LIBMBD VDW PARAMS KIND
- LIBMBD XC
- LIBXC1
- LIBXC1 Pn
- LIBXC2
- LIBXC2 Pn
- List of hybrid functionals
- LMAXFOCK
- LMAXTAU
- LMIXTAU
- LMODELHF
- LRHFCALC
- LSCALER0
- LSCSGRAD
- LSPIN VDW
- LTBOUNDLIBXC
- LTHOMAS
- LTSSURF
- LUSE VDW
- LVDW EWALD
- LVDWEXPANSION
- LVDWSCS