ML IWEIGHT

From VASP Wiki
Revision as of 06:30, 2 October 2020 by Kresse (talk | contribs)

ML_FF_IWEIGHT = [integer]
Default: ML_FF_IWEIGHT = 3 

Description: Flag to control the weighting of the energy, force and stress equations in the machine learning force field method.


For ML_FF_IWEIGHT the following settings are possible:

The energies, forces and stress tensors for each subset are normalized using the average of the standard deviation of the subsets. The division into subsets is based on the name tag as given in the first line of the POSCAR file. If training is performed for widely different materials, for instance different phases that have large energy difference, it is important to chose different system names in the POSCAR file. If this is not done, the standard deviation for the energy might become large, concomitantly reducing the weight of the energy equations.


Mind: For ML_FF_IWEIGHT=2 and 3 the weights are unitless quantities used to multiply the data, whereas for ML_FF_IWEIGHT=1 they have a unit. All three methods provide unitless energies, forces and stress tensors, which are then passed to the regression. Although the defaults are usually rather sensible, it can be useful to explore different weights. For instance, if vibrational frequencies are supposed to be reproduced accurately, we found it helpful to increase ML_FF_WTIFOR to 10-100. On the other hand, if energy difference between different phases need to be described accurately by the force field, it might be useful to increase ML_FF_WTOTEN to around 10-100.

Related Tags and Sections

ML_FF_LMLFF, ML_FF_WTOTEN, ML_FF_WTIFOR, ML_FF_WTSIF

Examples that use this tag