Equilibrium volume of Si in the RPA: Difference between revisions
No edit summary |
No edit summary |
||
Line 82: | Line 82: | ||
*We use exact diagonalization ({{TAG|ALGO}}=''Exact'') and keep 64 bands after diagonalization ({{TAG|NBANDS}}=64). | *We use exact diagonalization ({{TAG|ALGO}}=''Exact'') and keep 64 bands after diagonalization ({{TAG|NBANDS}}=64). | ||
*This calculations needs the orbitals ({{TAG|WAVECAR}} file) written in Step 3. | *This calculations needs the orbitals ({{TAG|WAVECAR}} file) written in Step 3. | ||
=== Step 5 === | |||
*The RPA correlation energy (ACFDT) calculation. | |||
*The following {{TAG|INCAR}} file is used in this step (INCAR.ACFDT): | |||
{{TAGBL|ALGO}} = ACFDT | |||
{{TAGBL|NBANDS}} = 64 | |||
{{TAGBL|ISMEAR}} = 0 ; {{TAGBL|SIGMA}} = 0.05 | |||
*In OUTCAR.ACFDT.X.X one finds the RPA correlation energy, e.g.: | |||
cutoff energy smooth cutoff RPA correlation Hartree contr. to MP2 | |||
--------------------------------------------------------------------------------- | |||
163.563 130.851 -10.7869840331 -19.0268026572 | |||
155.775 124.620 -10.7813600055 -19.0200457142 | |||
148.357 118.685 -10.7744584182 -19.0118291822 | |||
141.292 113.034 -10.7659931963 -19.0017871991 | |||
134.564 107.651 -10.7555712745 -18.9894197881 | |||
128.156 102.525 -10.7428704760 -18.9742991317 | |||
122.054 97.643 -10.7273118140 -18.9556871679 | |||
116.241 92.993 -10.7085991597 -18.9331679971 | |||
linear regression | |||
converged value -10.9079580568 -19.1711146204 | |||
*Take the “converged value”, in this case: ''EC(RPA) = -10.9079580568''eV (an approximate “infinite basis set” limit). | |||
*This calculations needs the orbitals ({{TAG|WAVECAR}} file) and the derivative of the orbitals w.r.t. the Bloch wavevectors ({{TAG|WAVEDER}} file) written in Step 4. | |||
---- | ---- | ||
== Used INCAR Tags == | == Used INCAR Tags == |
Revision as of 10:16, 3 April 2018
Overview > bandgap of Si in GW > bandstructure of Si in GW (VASP2WANNIER90) > bandstructure of SrVO3 in GW > CRPA of SrVO3 > Equilibrium volume of Si in the RPA > List of tutorials
Task
Calculation of the equilibrium lattice constant of Si in the RPA (ACFDT).
Input
POSCAR
system Si 5.8 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.5 2 cart 0.00 0.00 0.00 0.25 0.25 0.25
Calculation
The workflow of RPA total energy calculations consists of five consecutive steps:
- Step 1: a “standard” DFT groundstate calculation with a “dense” mesh of k-points.
- Step 2: compute the Hartree-Fock energy using the orbitals of Step 1. Needs WAVECAR file from step 1.
- Step 3: a “standard” DFT groundstate calculation with “coarse” mesh of k-points.
- Step 4: obtain DFT “virtual” orbitals (empty states). Needs WAVECAR file from step 3.
- Step 5: the RPA correlation energy (ACFDT) calculation. Needs WAVECAR and WAVEDER files from step 4.
In case of metallic systems there is an additional step between Steps 4 and 5, that is beyond the scope of this example.
All of the calculation steps are prepared in the script doall.sh.
Step 1
- DFT groundstate calculation with a “dense” mesh of k-points
- The following INCAR file is used (INCAR.DFT):
ISMEAR = 0 ; SIGMA = 0.05 EDIFF = 1E-8
- The following KPOINTS file is used (KPOINTS.12):
12x12x12 0 G 12 12 12 0 0 0
Step 2
- Compute the Hartree-Fock energy using the DFT orbitals (WAVECAR) of Step 1.
- The INCAR file INCAR.EXX is used in this step:
ALGO = EIGENVAL ; NELM = 1 LWAVE = .FALSE. LHFCALC = .TRUE. AEXX = 1.0 ; ALDAC = 0.0 ; AGGAC = 0.0 NKRED = 2 ISMEAR = 0 ; SIGMA = 0.05 KPAR = 8 NBANDS = 4
- NKRED=2 is used for the downsample the k-space representation of the Fock-potential to save time.
- Using NBANDS=4 only occupied states are considered to save time.
Step 3
- DFT groundstate calculation with a “coarse” mesh of k-points.
- The following INCAR file is used (INCAR.DFT):
ISMEAR = 0 ; SIGMA = 0.05 EDIFF = 1E-8
- The following coarse KPOINTS file is used (KPOINTS.12):
6x6x6 0 G 6 6 6 0 0 0
Step 4
- Obtain DFT "virtual" orbitals (empty states).
- The following INCAR file is used in this step (INCAR.DIAG):
ALGO = Exact NBANDS = 64 NELM = 1 LOPTICS = .TRUE. ISMEAR = 0 ; SIGMA = 0.05
- In this step one needs to set LOPTICS=.TRUE. to have VASP calculate the derivative of the orbitals w.r.t. the Bloch wavevector (stored in the WAVEDER file). These are needed to correctly describe the long-wavelength limit of the dielectric screening.
- We use exact diagonalization (ALGO=Exact) and keep 64 bands after diagonalization (NBANDS=64).
- This calculations needs the orbitals (WAVECAR file) written in Step 3.
Step 5
- The RPA correlation energy (ACFDT) calculation.
- The following INCAR file is used in this step (INCAR.ACFDT):
ALGO = ACFDT NBANDS = 64 ISMEAR = 0 ; SIGMA = 0.05
- In OUTCAR.ACFDT.X.X one finds the RPA correlation energy, e.g.:
cutoff energy smooth cutoff RPA correlation Hartree contr. to MP2 --------------------------------------------------------------------------------- 163.563 130.851 -10.7869840331 -19.0268026572 155.775 124.620 -10.7813600055 -19.0200457142 148.357 118.685 -10.7744584182 -19.0118291822 141.292 113.034 -10.7659931963 -19.0017871991 134.564 107.651 -10.7555712745 -18.9894197881 128.156 102.525 -10.7428704760 -18.9742991317 122.054 97.643 -10.7273118140 -18.9556871679 116.241 92.993 -10.7085991597 -18.9331679971
linear regression converged value -10.9079580568 -19.1711146204
- Take the “converged value”, in this case: EC(RPA) = -10.9079580568eV (an approximate “infinite basis set” limit).
- This calculations needs the orbitals (WAVECAR file) and the derivative of the orbitals w.r.t. the Bloch wavevectors (WAVEDER file) written in Step 4.
Used INCAR Tags
AEXX, AGGAC, ALDAC, ALGO, EDIFF, ISMEAR, KPAR, LHFCALC, LOPTICS, LWAVE, NBANDS, NELM, NKRED, NOMEGA, SIGMA, SYSTEM
Download
Overview > bandgap of Si in GW > bandstructure of Si in GW (VASP2WANNIER90) > bandstructure of SrVO3 in GW > CRPA of SrVO3 > Equilibrium volume of Si in the RPA > List of tutorials
Back to the main page.