Graphite MBD binding energy: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 6: Line 6:


== Input ==
== Input ==
=== POSCAR ===
*Graphite:
graphite
1.0
1.22800000 -2.12695839  0.00000000
1.22800000  2.12695839  0.00000000
0.00000000  0.00000000  6.71
4
direct
    0.00000000  0.00000000  0.25000000
    0.00000000  0.00000000  0.75000000
    0.33333333  0.66666667  0.25000000
    0.66666667  0.33333333  0.75000000
*Graphene:
graphite
1.0
1.22800000 -2.12695839  0.00000000
1.22800000  2.12695839  0.00000000
0.00000000  0.00000000  20.
2
direct
    0.00000000  0.00000000  0.25000000
    0.33333333  0.66666667  0.25000000
=== INCAR ===
{{TAGBL|IVDW}} = 202         
{{TAGBL|LVDWEXPANSION}} =.TRUE.
{{TAGBL|NSW}} = 1
{{TAGBL|IBRION}} = 2
{{TAGBL|ISIF}} = 4
{{TAGBL|PREC}} = Accurate
{{TAGBL|EDIFFG}} = 1e-5
{{TAGBL|LWAVE}} = .FALSE.
{{TAGBL|LCHARG}} = .FALSE.
{{TAGBL|ISMEAR}} = -5
{{TAGBL|SIGMA}} = 0.01
{{TAGBL|EDIFF}} = 1e-6
{{TAGBL|ALGO}} = Fast
{{TAGBL|NPAR}} = 2
=== KPOINTS ===
*Graphite:
Monkhorst Pack
0
gamma
16 16 8
0 0 0
*Graphene:
Monkhorst Pack
0
gamma
16 16 1
0 0 0


== Calculation ==
== Calculation ==
Line 19: Line 78:
Tkatchenko and Scheffler, overestimates  
Tkatchenko and Scheffler, overestimates  
this quantity strongly (0.083 eV/atom, see example  
this quantity strongly (0.083 eV/atom, see example  
graphiteBinding_ts). In this example we show
{{TAG|Graphite TS binding energy}}). In this example we show
that this problem can be eliminated by if  
that this problem can be eliminated by if  
many-body effects in dispersion energy are
many-body effects in dispersion energy are
taken into account using the MBD@rsSCS  
taken into account using the MBD@rsSCS  
method of Tchatchenko et al. (J. Chem. Phys. 140,
method of Tchatchenko et al. (see {{TAG|Many-body dispersion energy}}).
18A508 (2014)).


Once again, the calculation is performed in two steps  
Once again, the calculation is performed in two steps  
Line 37: Line 95:




Details of implementation of MBD@rsSCS in VASP + tests:
Bucko et al., J. Phys. Condens. Matter 28, 045201 (2016)


== Used INCAR Tags ==
== Used INCAR Tags ==

Revision as of 12:50, 10 May 2017

Task

Determine the interlayer binding energy of graphite in its experimental structure using the MBD@rsSCS method of Tchatchenko et al. to account for van der Waals interactions.

Input

POSCAR

  • Graphite:
graphite
1.0
1.22800000 -2.12695839  0.00000000
1.22800000  2.12695839  0.00000000
0.00000000  0.00000000  6.71
4
direct
   0.00000000  0.00000000  0.25000000
   0.00000000  0.00000000  0.75000000
   0.33333333  0.66666667  0.25000000
   0.66666667  0.33333333  0.75000000

  • Graphene:
graphite
1.0
1.22800000 -2.12695839  0.00000000
1.22800000  2.12695839  0.00000000
0.00000000  0.00000000  20.
2
direct
   0.00000000  0.00000000  0.25000000
   0.33333333  0.66666667  0.25000000

INCAR

IVDW = 202           
LVDWEXPANSION =.TRUE. 
NSW = 1 
IBRION = 2
ISIF = 4
PREC = Accurate
EDIFFG = 1e-5
LWAVE = .FALSE.
LCHARG = .FALSE.
ISMEAR = -5
SIGMA = 0.01
EDIFF = 1e-6
ALGO = Fast
NPAR = 2

KPOINTS

  • Graphite:
Monkhorst Pack
0
gamma
16 16 8
0 0 0
  • Graphene:
Monkhorst Pack
0
gamma
16 16 1
0 0 0


Calculation

Semilocal DFT at the GGA level underestimates long-range dispersion interactions. In the case of graphite, PBE predicts the interlayer binding energy of ~1 meV/atom which is too small compared to the RPA reference of 0.048 eV/atom (Lebgue et al., PRL 105, 195401 (2010)). In contrast, the pairwise correction scheme of Tkatchenko and Scheffler, overestimates this quantity strongly (0.083 eV/atom, see example Graphite TS binding energy). In this example we show that this problem can be eliminated by if many-body effects in dispersion energy are taken into account using the MBD@rsSCS method of Tchatchenko et al. (see Many-body dispersion energy).

Once again, the calculation is performed in two steps (single-point calculations) in which the energy for bulk graphite and for graphene are obtained. The binding energy is computed automatically and it is written in the file results.dat.

The computed value of 0.050 eV/A is now fairly close to the RPA reference of 0.048 eV/atom (Lebgue et al., PRL 105, 195401 (2010)).


Used INCAR Tags

ALGO, EDIFF, EDIFFG, IBRION, ISIF, ISMEAR, IVDW, LCHARG, LVDWEXPANSION, LWAVE, NPAR, NSW, PREC, SIGMA

Download

graphiteBinding_mdb.tgz


To the list of examples or to the main page