Angular functions: Difference between revisions
Vaspmaster (talk | contribs) No edit summary |
Vaspmaster (talk | contribs) No edit summary |
||
Line 47: | Line 47: | ||
|+ hybrid angular functions | |+ hybrid angular functions | ||
|- | |- | ||
| sp || sp-1 || <math>\frac{1}{\sqrt 2}\rm s+\frac{1}{\sqrt 2}\rm | | sp || sp-1 || <math>\frac{1}{\sqrt 2}\rm s+\frac{1}{\sqrt 2}\rm p_x</math> | ||
|- | |- | ||
| || sp-2 || <math>\frac{1}{\sqrt 2}\rm s-\frac{1}{\sqrt 2}\rm | | || sp-2 || <math>\frac{1}{\sqrt 2}\rm s-\frac{1}{\sqrt 2}\rm p_x</math> | ||
|- | |- | ||
| sp2 || sp2-1 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm | | sp2 || sp2-1 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x+\frac{1}{\sqrt 2}\rm p_y</math> | ||
|- | |- | ||
| || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm | | || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x-\frac{1}{\sqrt 2}\rm p_y</math> | ||
|- | |- | ||
| || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm | | || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm p_x</math> | ||
|- | |- | ||
| sp3 || sp3-1 || <math>\frac{1}{2}(\rm s+\rm | | sp3 || sp3-1 || <math>\frac{1}{2}(\rm s+\rm p_x+\rm p_y+\rm p_z)</math> | ||
|- | |- | ||
| || sp3-2 || <math>\frac{1}{2}(\rm s+\rm | | || sp3-2 || <math>\frac{1}{2}(\rm s+\rm p_x-\rm p_y-\rm p_z)</math> | ||
|- | |- | ||
| || sp3-2 || <math>\frac{1}{2}(\rm s-\rm | | || sp3-2 || <math>\frac{1}{2}(\rm s-\rm p_x+\rm p_y-\rm p_z)</math> | ||
|- | |- | ||
| || sp3-4 || <math>\frac{1}{2}(\rm s-\rm | | || sp3-4 || <math>\frac{1}{2}(\rm s-\rm p_x-\rm p_y+\rm p_z)</math> | ||
|- | |- | ||
| sp3d || sp3d-1 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm | | sp3d || sp3d-1 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x+\frac{1}{\sqrt 2}\rm p_y</math> | ||
|- | |- | ||
| || sp3d-2 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm | | || sp3d-2 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x-\frac{1}{\sqrt 2}\rm p_y</math> | ||
|- | |- | ||
| || sp3d-3 || <math>\frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm | | || sp3d-3 || <math>\frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm p_x</math> | ||
|- | |- | ||
| || sp3d-4 || <math>\frac{1}{\sqrt 2}\rm | | || sp3d-4 || <math>\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 2}\rm d_{z^2}</math> | ||
|- | |- | ||
| || sp3d-5 || <math>-\frac{1}{\sqrt 2}\rm | | || sp3d-5 || <math>-\frac{1}{\sqrt 2}\rm p_z+\frac{2}{\sqrt 2}\rm d_{z^2}</math> | ||
|- | |- | ||
| sp3d2 || sp3d2-1 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm | | sp3d2 || sp3d2-1 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_x-\frac{1}{\sqrt 12}\rm d_{z^2}+\frac{1}{2}\rm d_{x^2-y^2}</math> | ||
|- | |- | ||
| || sp3d2-2 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm | | || sp3d2-2 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_x-\frac{1}{\sqrt 12}\rm d_{z^2}+\frac{1}{2}\rm d_{x^2-y^2}</math> | ||
|- | |- | ||
| || sp3d2-3 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm | | || sp3d2-3 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_y-\frac{1}{\sqrt 12}\rm d_{z^2}-\frac{1}{2}\rm d_{x^2-y^2}</math> | ||
|- | |- | ||
| || sp3d2-4 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm | | || sp3d2-4 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_y-\frac{1}{\sqrt 12}\rm d_{z^2}-\frac{1}{2}\rm d_{x^2-y^2}</math> | ||
|- | |- | ||
| || sp3d2-5 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm | | || sp3d2-5 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 3}\rm d_{z^2}</math> | ||
|- | |- | ||
| || sp3d2-6 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm | | || sp3d2-6 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 3}\rm d_{z^2}</math> | ||
|} | |} |
Revision as of 16:01, 13 January 2017
real spherical harmonics l m Name Ylm 0 1 s 1 -1 py 1 0 pz 1 1 py 2 -2 dxy 2 -1 dyz 2 0 dz2 2 1 dxz 2 2 dx2-y2 3 -3 fy(3x2-y2) 3 -2 fxyz 3 -1 fyz2 3 0 fz3 3 1 fxz2 3 2 fz(x2-y2) 3 3 fx(x2-3y2)
hybrid angular functions sp sp-1 sp-2 sp2 sp2-1 sp2-2 sp2-2 sp3 sp3-1 sp3-2 sp3-2 sp3-4 sp3d sp3d-1 sp3d-2 sp3d-3 sp3d-4 sp3d-5 sp3d2 sp3d2-1 sp3d2-2 sp3d2-3 sp3d2-4 sp3d2-5 sp3d2-6