BSEPREC: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
For example, the number of steps <math>N_{\rm steps}</math> for {{TAG|BSEPREC}} = Low can be found via <math>N_{\rm steps}=\frac{{\rm OMEGAMAX}\times 2}{{\rm CSHIFT}\times5^{-1}}</math> | For example, the number of steps <math>N_{\rm steps}</math> for {{TAG|BSEPREC}} = Low can be found via <math>N_{\rm steps}=\frac{{\rm OMEGAMAX}\times 2}{{\rm CSHIFT}\times5^{-1}}</math> | ||
== Related tag and articles == | == Related tag and articles == | ||
{{TAG|IBSE}}, | {{TAG|IBSE}}, |
Revision as of 10:25, 20 October 2023
BSEPREC = Low | Medium | High | Accurate
Default: BSEPREC = Medium
Description: BSEPREC determines the precision of the time-evolution algorithm for solving the Bethe-Salpeter or Casida equations, i.e., the timestep and the number of steps.
The timestep in the time-evolution calculation is inversely proportional to the maximum transition energy OMEGAMAX and the number of steps is inversely proportional to the broadening CSHIFT. Depending on the BSEPREC stable these parameters are scaled depending on the precision tag BSEPREC.
BSEPREC OMEGAMAX CSHIFT Accurate (a) High (h) Medium (m) Low (l)
For example, the number of steps for BSEPREC = Low can be found via