Nose-Hoover-chain thermostat: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 9: Line 9:
The number of thermostats is controlled by the flag  {{TAG|NHC_NCHAINS}}. Typically, this flag is set to a value between 1 and 5, the maximal allowed value is 20. In the special case of {{TAG|NHC_NCHAINS}}=0, the thermostat is switched off, leading to a MD in microcanonical ensemble. Another special case of {{TAG|NHC_NCHAINS}}=1 corresponds to the  standard {{TAG|Nose-Hoover thermostat}}.  
The number of thermostats is controlled by the flag  {{TAG|NHC_NCHAINS}}. Typically, this flag is set to a value between 1 and 5, the maximal allowed value is 20. In the special case of {{TAG|NHC_NCHAINS}}=0, the thermostat is switched off, leading to a MD in microcanonical ensemble. Another special case of {{TAG|NHC_NCHAINS}}=1 corresponds to the  standard {{TAG|Nose-Hoover thermostat}}.  


The only parameter of this thermostat is {{TAG|NHC_PERIOD}}, corresponding to a characteristic time scale (<math>\tau</math>) of the system expressed in time steps. This variable is used to setup the mass-like variables via the relations:  
The only parameter of this thermostat is the characteristic time scale (<math>\tau</math>), defined via flag {{TAG|NHC_PERIOD}}. This parameter is used to setup the mass-like variables via the relations:  


::<math>
::<math>

Revision as of 07:44, 22 April 2023

The standard Nose Hoover suffers from well known issues, such as the ergodicity violation in the case of simple harmonic oscillator[1]. As proposed by Martyna and Klein[1], these problems can be solved by using multiple Nose Hoover thermostats connected in a chain. Although the underlining dynamics is non-Hamiltonian, the corresponding equations of motion conserve the following energy term:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mathcal{H'} = \mathcal{H}(\bold{r},\bold{p}) + \sum\limits_{j=1}^{M} \frac{p_{\eta_j}^2}{2Q_j} + (3N-N_c)k_{B} T \eta_1 + k_{B} T \sum\limits_{j=2}^{M} \eta_j }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mathcal{H}(\bold{r},\bold{p})} is the Hamiltonian of the physical system, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): M , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): N and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle N_c} are the numbers of thermostats, atoms in the cell, and geometric constraints, respectively, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \eta_{j}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle p_{\eta_j}} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle Q_{j}} are the position, momentum, and mass-like parameter associated with the thermostat Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): j . Just like the total energy in NVE ensemble,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mathcal{H'}} is valuable for diagnostics purposes. Indeed, a significant drift in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mathcal{H'}} indicate that the corresponding computational setting is suboptimal. Typical reasons for this behavior involve noisy forces (e.g., because of a poor SCF convergence) and/or a too large integration step (defined via POTIM).

The number of thermostats is controlled by the flag NHC_NCHAINS. Typically, this flag is set to a value between 1 and 5, the maximal allowed value is 20. In the special case of NHC_NCHAINS=0, the thermostat is switched off, leading to a MD in microcanonical ensemble. Another special case of NHC_NCHAINS=1 corresponds to the standard Nose-Hoover thermostat.

The only parameter of this thermostat is the characteristic time scale (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): \tau ), defined via flag NHC_PERIOD. This parameter is used to setup the mass-like variables via the relations:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle Q_1 = 3 (N -N_c)k_{B} T \tau^2 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle Q_j = k_{B} T \tau^2; \; \; \; j=2,\dots,M }


NHC_NRESPA


NHC_NS