GGA: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
*The LIBXC tag (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}}. Along with {{TAG|GGA}}=LIBXC, it is also necessary to specify the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags that specify the particular functional. Note that it is necessary to have [[Makefile.include#Libxc_.28optional.29|Libxc >= 5.2.0 installed]] and VASP.6.3.0 or higher compiled with [[Precompiler_options#-DUSELIBXC|precompiler options]]. | *The LIBXC tag (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}}. Along with {{TAG|GGA}}=LIBXC, it is also necessary to specify the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags that specify the particular functional. Note that it is necessary to have [[Makefile.include#Libxc_.28optional.29|Libxc >= 5.2.0 installed]] and VASP.6.3.0 or higher compiled with [[Precompiler_options#-DUSELIBXC|precompiler options]]. | ||
*The flags allow to select range-separated ACFDT calculations, where a short-range local (DFT-like) exchange and correlation kernel is added to the long-range exchange and RPA correlation energy. | *The flags allow to select range-separated ACFDT calculations, where a short-range local (DFT-like) exchange and correlation kernel is added to the long-range exchange and RPA correlation energy. | ||
*When OR, BO, MK, ML or CX is used in combination with a nonlocal vdW-DF functional, the GGA component of the correlation should in principle be | *When OR, BO, MK, ML or CX is used in combination with a nonlocal vdW-DF functional, the GGA component of the correlation should in principle be turned off with {{TAG|AGGAC}}=0 (see {{TAG|nonlocal vdW-DF functionals}}). | ||
{{NB| important| VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the {{FILE|POTCAR}} file. For this to work, the original LEXCH tag must not be modified in the {{FILE|POTCAR}} file.}} | {{NB| important| VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the {{FILE|POTCAR}} file. For this to work, the original LEXCH tag must not be modified in the {{FILE|POTCAR}} file.}} |
Revision as of 07:47, 10 April 2022
GGA = PE | RP | PS | AM | LIBXC | ...
Default: GGA = exchange-correlation functional in accordance with the POTCAR file
Description: GGA specifies a LDA or GGA exchange-correlation functional.
This tag was added to perform GGA calculations with pseudopotentials generated with conventional LDA reference configurations.
A few points should be noted:
- The LIBXC tag (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc[1][2][3]. Along with GGA=LIBXC, it is also necessary to specify the LIBXC1 and LIBXC2 tags that specify the particular functional. Note that it is necessary to have Libxc >= 5.2.0 installed and VASP.6.3.0 or higher compiled with precompiler options.
- The flags allow to select range-separated ACFDT calculations, where a short-range local (DFT-like) exchange and correlation kernel is added to the long-range exchange and RPA correlation energy.
- When OR, BO, MK, ML or CX is used in combination with a nonlocal vdW-DF functional, the GGA component of the correlation should in principle be turned off with AGGAC=0 (see nonlocal vdW-DF functionals).
Important: VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the POTCAR file. For this to work, the original LEXCH tag must not be modified in the POTCAR file. |
The possible options for the GGA tag are:
- No functional:
CO No exchange-correlation
- LDA functionals:
WI Slater exchange[4] + Wigner correlation[5] (Eq. (3.2) in Ref. [6]) HL Slater exchange[4] + Hedin-Lundqvist correlation[7] PZ (or CA) Slater exchange[4] + Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data[8][9] VW Slater exchange[4] + Vosko-Wilk-Nusair correlation (VWN5)[10] LIBXC (or LI) Any LDA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required)
- GGA functionals:
91 Perdew-Wang (PW91)[11] PE Perdew-Burke-Ernzerhof (PBE)[12] RE Revised PBE from Zhang and Yang (revPBE)[13] RP Revised PBE from Hammer et al. (RPBE)[14] PS Revised PBE for solids (PBEsol) AM Armiento-Mattson (AM05)[15][16][17] B3 B3LYP[18] with VWN3[10] for LDA correlation B5 B3LYP[18] with VWN5[10] for LDA correlation BF BEEF (requires VASP compiled with -Dlibbeef)[19] LIBXC (or LI) Any GGA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required) Designed to be combined with nonlocal vdW-DF functionals: OR optPBE exchange[20] + PBE correlation[12] BO optB88 exchange[20] + PBE correlation[12] MK optB86b exchange + PBE correlation[12] ML PW86R exchange[21] + PBE correlation[12] CX CX (LV-PW86r) exchange + PBE correlation[12]
- Short-range functionals for range-separated ACFDT-RPA (WARNING: not extensively tested and should be used only after careful inspection of the source code):
RA New RPA Perdew-Wang PL New RPA+ Perdew-Wang 03 Range-separated ACFDT (LDA - sr RPA) 05 Range-separated ACFDT (LDA - sr RPA) 10 Range-separated ACFDT (LDA - sr RPA) 20 Range-separated ACFDT (LDA - sr RPA)
References
- ↑ a b c M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Comput. Phys. Commun., 183, 2272 (2012).
- ↑ a b c S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX, 7, 1 (2018).
- ↑ a b c https://libxc.gitlab.io
- ↑ a b c d P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
- ↑ E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
- ↑ D. Pines, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1955), Vol. I, p. 367.
- ↑ L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
- ↑ D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
- ↑ J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- ↑ a b c S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
- ↑ J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
- ↑ a b c d e f J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
- ↑ Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
- ↑ B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
- ↑ R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
- ↑ A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills, and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
- ↑ A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).
- ↑ a b P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
- ↑ J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, Jens K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
- ↑ a b J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
- ↑ K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).