LEFG: Difference between revisions
No edit summary |
|||
Line 23: | Line 23: | ||
'''Beware''': for heavy nuclei inaccuracies are to be expected because of an incomplete treatement of relativistic effects. | '''Beware''': for heavy nuclei inaccuracies are to be expected because of an incomplete treatement of relativistic effects. | ||
== Related | == Related tags and articles == | ||
{{TAG|QUAD_EFG}} | {{TAG|QUAD_EFG}} | ||
Revision as of 14:30, 8 April 2022
LEFG = .TRUE. | .FALSE.
Default: LEFG = .FALSE.
Description: The LEFG Computes the Electric Field Gradient at positions of the atomic nuclei.
For LEFG=.TRUE., the electric field gradient tensors at the positions of the atomic nuclei are calculated using the method of Petrilli et al.[1]
The EFG tensors are symmetric. The principal components Vii and asymmetry parameter η are printed for each atom. Following convention the principal components Vii are ordered such that:
The asymmetry parameter is defined as η=(Vyy-Vxx)/Vzz. For so-called "quadrupolar nuclei", i.e., nuclei with nuclear spin I>1/2, NMR experiments can access Vzz and η.
Beware: Attaining convergence can require somewhat smaller EDIFF than the default of 1.e-4 and somewhat larger cutoff ENCUT than default with PREC=A. Moreover, the calculation of EFGs typically requires high quality PAW data sets. Semi-core electrons can be important (check with *_pv or *_sv POTCARs) as well as explicit inclusion of augmentation channel(s) with d-projectors.
To convert the Vzz values into the Cq often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the QUAD_EFG-tag.
Beware: for heavy nuclei inaccuracies are to be expected because of an incomplete treatement of relativistic effects.