Category:Hybrid functionals: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 1: Line 1:
Hybrid functionals, which mix the Hartree-Fock and Kohn-Sham theories{{cite|becke:jcp:93}}, can be more accurate than semilocal methods like GGA, in particular for nonmetallic systems. They are suited for band gap calculation for instance. Hybrid functionals are available in VASP.
Hybrid functionals, which mix the Hartree-Fock and Kohn-Sham theories{{cite|becke:jcp:93}}, can be more accurate than semilocal methods like GGA, in particular for nonmetallic systems. They are suited for band gap calculations for instance. Hybrid functionals are available in VASP.


== Theoretical background ==
== Theoretical background ==

Revision as of 11:46, 8 April 2022

Hybrid functionals, which mix the Hartree-Fock and Kohn-Sham theories[1], can be more accurate than semilocal methods like GGA, in particular for nonmetallic systems. They are suited for band gap calculations for instance. Hybrid functionals are available in VASP.

Theoretical background

In hybrid functionals the exchange part consists of a linear combination of Hartree-Fock (HF) and semilocal (e.g., GGA) exchange:

where determines the relative amount of HF and semilocal exchange. There are essentially two types of hybrid functionals: (a) the ones where the HF exchange is applied at full interelectronic range (unscreened hybrids) and (b) the others where the HF exchange is applied either at short or at long interelectronic range (called screened or range-separated hybrids). From the practical point of view the short-range hybrid functionals like HSE are preferable for periodic solids, since leading to faster convergence with respect to the number of k-points (or size of the unit cell).

More detail about the formalism of the HF method and hybrids can be found here.

How to

List of available hybrid functionals and how to specify them in INCAR.

Downsampling of the Hartree-Fock operator.

Further reading

  • A comprehensive study of the performance of the HSE03/HSE06 functional compared to the PBE and PBE0 functionals.[2]
  • The B3LYP functional applied to solid state systems.[3]
  • Applications of hybrid functionals to selected materials: Ceria,[4] lead chalcogenides,[5] CO adsorption on metals,[6][7] defects in ZnO,[8] excitonic properties,[9] SrTiO and BaTiO.[10]

References