Category:Interface pinning: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 1: Line 1:
Interface Pinning is a method for finding melting points from an MD simulation of a system where the liquid and the solid phase are in contact.
== Theory ==
== Theory ==
Interface Pinning is a method for finding melting points from an MD simulation of a system where the liquid and the solid phase are in contact. To prevent melting or freezing at constant pressure and constant temperature, a bias potential applies a penalty energy for deviations from the desired two-phase system.
To prevent melting or freezing at constant pressure and constant temperature, a bias potential applies a penalty energy for deviations from the desired two-phase system.


The Steinhardt-Nelson order parameter <math>Q_6</math> is used for discriminating the solid from the liquid phase and the bias potential is given by
The Steinhardt-Nelson order parameter <math>Q_6</math> is used for discriminating the solid from the liquid phase and the bias potential is given by

Revision as of 15:51, 6 April 2022

Interface Pinning is a method for finding melting points from an MD simulation of a system where the liquid and the solid phase are in contact.

Theory

To prevent melting or freezing at constant pressure and constant temperature, a bias potential applies a penalty energy for deviations from the desired two-phase system.

The Steinhardt-Nelson order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6} is used for discriminating the solid from the liquid phase and the bias potential is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): U_{{\textrm {bias}}}({\mathbf {R}})={\frac \kappa 2}\left(Q_{6}({\mathbf {R}})-a\right)^{2}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6}({{\mathbf {R}}}) is the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6} order parameter for the current configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\mathbf {R}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): a is the desired value of the order parameter close to the order parameter of the initial two-phase configuration.

With the bias potential enabled, the system can equilibrate while staying in the two-phase configuration. From the difference of the average order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): \langle Q_{6}\rangle in equilibrium and the desired order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): a one can directly compute the difference of the chemical potential of the solid and the liquid phase:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): N(\mu _{{\textrm {solid}}}-\mu _{{\textrm {liquid}}})=\kappa (Q_{{6{\textrm {solid}}}}-Q_{{6{\textrm {liquid}}}})(\langle Q_{6}\rangle -a)

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): N is the number of atoms in the simulation.

It is preferable to simulate in the super-heated regime, as it is easier for the bias potential to prevent a system from melting than to prevent a system from freezing.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6}({\mathbf {R}}) needs to be continuous for computing the forces on the atoms originating from the bias potential. We use a smooth fading function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): w(r) to weight each pair of atoms at distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): r for the calculation of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6} order parameter

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): w(r)=\left\{{\begin{array}{cl}1&{\textrm {for}}\,\,r\leq n\\{\frac {(f^{2}-r^{2})^{2}(f^{2}-3n^{2}+2r^{2})}{(f^{2}-n^{2})^{3}}}&{\textrm {for}}\,\,n<r<f\\0&{\textrm {for}}\,\,f\leq r\end{array}}\right.

Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): n and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): f are the near- and far-fading distances given in the INCAR file respectively. A good choice for the fading range can be made from the radial distribution function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) of the crystal phase. We recommend to use the distance where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) goes below 1 after the first peak as the near fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): n and the distance where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) goes above 1 again before the second peak as the far fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): f . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) should be low where the fading function has a high derivative to prevent spurious stress.

How to

The interface pinning method uses the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Np_{z}T ensemble where the barostat only acts on the direction of the lattice that is perpendicular to the solid liquid interface. This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.

The following variables need to be set for the interface pinning method:

  • OFIELD_Q6_NEAR: This tag defines the near-fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): n .
  • OFIELD_Q6_FAR: This tag defines the far-fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): f .
  • OFIELD_KAPPA: This tag defines the coupling strength Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): \kappa of the bias potential.
  • OFIELD_A: This tag defines the desired value of the order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): a .

The following is a sample INCAR file for interface pinning of sodium[1]:

TEBEG = 400                   # temperature in K
POTIM = 4                     # timestep in fs
IBRION = 0                    # do MD
ISIF = 3                      # use Parrinello-Rahman barostat for the lattice
MDALGO = 3                    # use Langevin thermostat
LANGEVIN_GAMMA = 1.0          # friction coef. for atomic DoFs for each species
LANGEVIN_GAMMA_L = 3.0        # friction coef. for the lattice DoFs
PMASS = 100                   # mass for lattice DoFs
LATTICE_CONSTRAINTS = F F T   # fix x&y, release z lattice dynamics
OFIELD_Q6_NEAR = 3.22         # fading distances for computing a continuous Q6
OFIELD_Q6_FAR = 4.384         # in Angstrom
OFIELD_KAPPA = 500            # strength of bias potential in eV/(unit of Q)^2
OFIELD_A = 0.15               # desired value of the Q6 order parameter

References



Contents

Pages in category "Interface pinning"

The following 4 pages are in this category, out of 4 total.