ML ICRITERIA: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 3: Line 3:
Description: Decides whether ({{TAG|ML_ICRITERIA}}>0) or how the Bayesian error threshold ({{TAG|ML_CTIFOR}}) is updated within the machine learning force field method. {{TAG|ML_CTIFOR}} determines whether a first principles calculations is performed.
Description: Decides whether ({{TAG|ML_ICRITERIA}}>0) or how the Bayesian error threshold ({{TAG|ML_CTIFOR}}) is updated within the machine learning force field method. {{TAG|ML_CTIFOR}} determines whether a first principles calculations is performed.
----
----
The usage of this tag in combination with the learning algorithms is described here: [[Machine learning force field calculations: Important algorithms#Threshold for error of forces|here]].
The usage of this tag in combination with the learning algorithms is described here: [[Machine learning force field calculations: Basics#Threshold for error of forces|here]].


The following options are possible for {{TAG|ML_ICRITERIA}}:
The following options are possible for {{TAG|ML_ICRITERIA}}:

Revision as of 10:09, 2 November 2021

ML_ICRITERIA = [integer]
Default: ML_ICRITERIA = 1 

Description: Decides whether (ML_ICRITERIA>0) or how the Bayesian error threshold (ML_CTIFOR) is updated within the machine learning force field method. ML_CTIFOR determines whether a first principles calculations is performed.


The usage of this tag in combination with the learning algorithms is described here: here.

The following options are possible for ML_ICRITERIA:

  • ML_ICRITERIA = 0: No update of the threshold ML_CTIFOR is done.
  • ML_ICRITERIA = 1: Update of criteria using average of the Bayesian errors of the forces from history (see description of method below).
  • ML_ICRITERIA = 2: Update of criteria using gliding average of Bayesian errors (probably more robust but not well tested).

Related Tags and Sections

ML_LMLFF, ML_CTIFOR, ML_CSLOPE, ML_CSIG, ML_MHIS, ML_XMIX

Examples that use this tag