Angular functions: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 40: Line 40:
|-
|-
|  3 ||  3 || fx(x2-3y2) || <math>\frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(x^2-3y^2)x}{r^3}</math>
|  3 ||  3 || fx(x2-3y2) || <math>\frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(x^2-3y^2)x}{r^3}</math>
|}
:{| border="1" cellspacing="0" cellpadding="5"
|-
|+ hybrid angular functions
|-
| sp || sp-1 || <math>\frac{1}{\sqrt 2}\rm s+\frac{1}{\sqrt 2}\rm px</math>
|-
|    || sp-2 || <math>\frac{1}{\sqrt 2}\rm s-\frac{1}{\sqrt 2}\rm px</math>
|-
| sp2 || sp2-1 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm px+\frac{1}{\sqrt 2}\rm py</math>
|-
|    || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm px-\frac{1}{\sqrt 2}\rm py</math>
|-
|    || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm px</math>


|}
|}

Revision as of 15:30, 13 January 2017

real spherical harmonics
l m Name Ylm
0 1 s
1 -1 py
1 0 pz
1 1 py
2 -2 dxy
2 -1 dyz
2 0 dz2
2 1 dxz
2 2 dx2-y2
3 -3 fy(3x2-y2)
3 -2 fxyz
3 -1 fyz2
3 0 fz3
3 1 fxz2
3 2 fz(x2-y2)
3 3 fx(x2-3y2)
hybrid angular functions
sp sp-1
sp-2
sp2 sp2-1
sp2-2
sp2-2