GGA: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 58: Line 58:
|LIBXC (or LI)  || Any GGA from Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}} (the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags are also required)
|LIBXC (or LI)  || Any GGA from Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}} (the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags are also required)
|-
|-
|Intended for the {{TAG|nonlocal vdW-DF functionals}}: ||
|Designed to be combinbed with {{TAG|nonlocal vdW-DF functionals}}: ||
|-
|-
|OR  || optPBE exchange{{cite|klimes:jpcm:2010}} + PBE correlation{{cite|perdew:prl:1996}}
|OR  || optPBE exchange{{cite|klimes:jpcm:2010}} + PBE correlation{{cite|perdew:prl:1996}}

Revision as of 07:15, 10 April 2022

GGA = PE | RP | PS | AM | LIBXC | ...
Default: GGA = exchange-correlation functional in accordance with the POTCAR file 

Description: GGA specifies a LDA or GGA exchange-correlation functional.


This tag was added to perform GGA calculations with pseudopotentials generated with conventional LDA reference configurations.

Important: VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the POTCAR file. For this to work, the original LEXCH tag must not be modified in the POTCAR file.

The possible options for the GGA tag are:

No functional:
CO No exchange-correlation
LDA functionals:
WI Slater exchange[1] + Wigner correlation[2] (Eq. (3.2) in Ref. [3])
HL Slater exchange[1] + Hedin-Lundqvist correlation[4]
PZ (or CA) Slater exchange[1] + Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data[5][6]
VW Slater exchange[1] + Vosko-Wilk-Nusair correlation (VWN5)[7]
LIBXC (or LI) Any LDA from Libxc[8][9][10] (the LIBXC1 and LIBXC2 tags are also required)
GGA functionals:
91 Perdew-Wang (PW91)[11]
PE Perdew-Burke-Ernzerhof (PBE)[12]
RE Revised PBE from Zhang and Yang (revPBE)[13]
RP Revised PBE from Hammer et al. (RPBE)[14]
PS Revised PBE for solids (PBEsol)
AM Armiento-Mattson (AM05)[15][16][17]
B3 B3LYP[18] with VWN3[7] for LDA correlation
B5 B3LYP[18] with VWN5[7] for LDA correlation
BF BEEF (requires VASP compiled with -Dlibbeef)[19]
LIBXC (or LI) Any GGA from Libxc[8][9][10] (the LIBXC1 and LIBXC2 tags are also required)
Designed to be combinbed with nonlocal vdW-DF functionals:
OR optPBE exchange[20] + PBE correlation[12]
BO optB88 exchange[20] + PBE correlation[12]
MK optB86b exchange + PBE correlation[12]
ML PW86R exchange[21] + PBE correlation[12]
CX CX (LV-PW86r) exchange + PBE correlation[12]


Warning: The following functionals are For range-separated ACFDT
RA New RPA Perdew-Wang
PL New RPA+ Perdew-Wang
03 Range-separated ACFDT (LDA - sr RPA)
05 Range-separated ACFDT (LDA - sr RPA)
10 Range-separated ACFDT (LDA - sr RPA)
20 Range-separated ACFDT (LDA - sr RPA)

The LIBXC tag (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc[8][9][10]. Along with GGA=LIBXC, it is also necessary to specify the LIBXC1 and LIBXC2 tags that specify the particular functional. Note that it is necessary to have Libxc >= 5.2.0 installed and VASP.6.3.0 or higher compiled with precompiler options.

The AM05 and PBEsol functionals are constructed using different principles, but both aim at a decent description of yellium surface energies. In practice, they yield quite similar results for most materials. Both are available for spin-polarized calculations.

The special flags for range-separated RPA have not been extensively tested and should be used only after careful inspection of the source code. The flags allow to select range-separated ACFDT calculations, where a short-range local (DFT-like) exchange and correlation kernel is added to the long-range exchange and RPA correlation energy.

Examples that use this tag

References

  1. a b c d P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
  2. E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
  3. D. Pines, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1955), Vol. I, p. 367.
  4. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
  5. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
  6. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
  7. a b c S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
  8. a b c M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Comput. Phys. Commun., 183, 2272 (2012).
  9. a b c S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX, 7, 1 (2018).
  10. a b c https://libxc.gitlab.io
  11. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
  12. a b c d e f J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
  13. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
  14. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
  15. R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
  16. A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills, and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
  17. A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).
  18. a b P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  19. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, Jens K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
  20. a b J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
  21. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).