List of hybrid functionals: Difference between revisions
No edit summary |
No edit summary |
||
Line 75: | Line 75: | ||
---- | ---- | ||
[[Category:Exchange-correlation functionals]][[Category:Hybrid_functionals]] | [[Category:Exchange-correlation functionals]][[Category:Hybrid_functionals]] |
Revision as of 11:58, 8 April 2022
A certain number of hybrid functionals are available in VASP, and furthermore if VASP is compiled with the library of exchange-correlation functionals Libxc, then most of the existing hybrid functionals can be used[1]. Examples of INCAR files are shown below.
Range-separated hybrid functionals
- HSE06[2]
LHFCALC = .TRUE. GGA = PE HFSCREEN = 0.2
- with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1.0 and ALDAC=1.0, and using the PBE POTCAR files.
LHFCALC = .TRUE. GGA = PE HFSCREEN = 0.3
- with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1.0 and ALDAC=1.0, and using the PBE POTCAR files.
- HSEsol[6]
LHFCALC = .TRUE. GGA = PS HFSCREEN = 0.2
- with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1.0 and ALDAC=1.0, and using the PBE POTCAR files.
Unscreened hybrid functionals
LHFCALC = .TRUE. GGA = PE
- with the default values AEXX=0.25, AGGAX=1-AEXX=0.75, AGGAC=1.0 and ALDAC=1.0, and using the PBE POTCAR files.
- B3LYP[10] with VWN3 (or VWN5) for LDA correlation
LHFCALC = .TRUE. GGA = B3 (or B5) AEXX = 0.2 AGGAX = 0.72 AGGAC = 0.81 ALDAC = 0.19
- and using the PBE POTCAR files.
LHFCALC = .TRUE. GGA = LIBXC LIBXC1 = 401 (or HYB_GGA_XC_B3PW91) AEXX = 0.2
- and using the PBE POTCAR files.
LHFCALC = .TRUE. GGA = LIBXC LIBXC1 = 412 (or HYB_GGA_XC_B1WC) AEXX = 0.16
- and using the PBE POTCAR files.
- Hartree-Fock
LHFCALC = .TRUE. AEXX = 1.0 ALDAC = 0.0 AGGAC = 0.0
References
- ↑ https://libxc.gitlab.io/functionals/
- ↑ A. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
- ↑ J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
- ↑ J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
- ↑ J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
- ↑ L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011).
- ↑ J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
- ↑ M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
- ↑ C. Adamo and V. Barone, Phys. Rev. Lett., 110, 6158 (1999).
- ↑ P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
- ↑ A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- ↑ D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Iniguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008).