LDAUTYPE: Difference between revisions
No edit summary |
No edit summary |
||
Line 26: | Line 26: | ||
:where <math>|m\rangle</math> are real spherical harmonics of angular momentum <math>\ell</math>={{TAG|LDAUL}}. | :where <math>|m\rangle</math> are real spherical harmonics of angular momentum <math>\ell</math>={{TAG|LDAUL}}. | ||
:The unscreened electron-electron interaction <math>U_{\gamma_{1}\gamma_{3}\gamma_{2}\gamma_{4}}</math> can be written in terms of the Slater integrals <math>F^0</math>, <math>F^2</math>, <math>F^4</math>, and <math>F^6</math> (f | :The unscreened electron-electron interaction <math>U_{\gamma_{1}\gamma_{3}\gamma_{2}\gamma_{4}}</math> can be written in terms of the Slater integrals <math>F^0</math>, <math>F^2</math>, <math>F^4</math>, and <math>F^6</math> (<math>f</math> electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true electron-electron interaction, since in solids the Coulomb interaction is screened (especially <math>F^0</math>). | ||
:In practice these integrals are often treated as parameters, ''i.e.'', adjusted to reach agreement with experiment for a property like for instance the equilibrium volume, the magnetic moment or the band gap. They are normally specified in terms of the effective on-site Coulomb- and exchange parameters, <math>U</math> and <math>J</math> ({{TAG|LDAUU}} and {{TAG|LDAUJ}}, respectively). <math>U</math> and <math>J</math> can also be extracted from constrained-DFT calculations. | :In practice these integrals are often treated as parameters, ''i.e.'', adjusted to reach agreement with experiment for a property like for instance the equilibrium volume, the magnetic moment or the band gap. They are normally specified in terms of the effective on-site Coulomb- and exchange parameters, <math>U</math> and <math>J</math> ({{TAG|LDAUU}} and {{TAG|LDAUJ}}, respectively). <math>U</math> and <math>J</math> can also be extracted from constrained-DFT calculations. |
Revision as of 08:14, 8 April 2022
LDAUTYPE = 1 | 2 | 4
Default: LDAUTYPE = 2
Description: LDAUTYPE specifies which type of DFT+U approach will be used.
Three types of DFT+U approaches are available in VASP. These are the following:
- This particular flavour of DFT+U is of the form
- and is determined by the PAW on-site occupancies
- and the (unscreened) on-site electron-electron interaction
- where are real spherical harmonics of angular momentum =LDAUL.
- The unscreened electron-electron interaction can be written in terms of the Slater integrals , , , and ( electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true electron-electron interaction, since in solids the Coulomb interaction is screened (especially ).
- In practice these integrals are often treated as parameters, i.e., adjusted to reach agreement with experiment for a property like for instance the equilibrium volume, the magnetic moment or the band gap. They are normally specified in terms of the effective on-site Coulomb- and exchange parameters, and (LDAUU and LDAUJ, respectively). and can also be extracted from constrained-DFT calculations.
- These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment):
- - -
- The essence of the DFT+U method consists of the assumption that one may now write the total energy as:
- where the Hartree-Fock like interaction replaces the semilocal on site due to the fact that one subtracts a double counting energy , which supposedly equals the on-site semilocal contribution to the total energy,
- LDAUTYPE=2: The simplified (rotationally invariant) approach to the DFT+U, introduced by Dudarev et al.[2]
- This flavour of DFT+U is of the following form:
- This can be understood as adding a penalty functional to the semilocal total energy expression that forces the on-site occupancy matrix in the direction of idempotency,
- .
- Real matrices are only idempotent when their eigenvalues are either 1 or 0, which for an occupancy matrix translates to either fully occupied or fully unoccupied levels.
- Note: in Dudarev's approach the parameters and do not enter seperately, only the difference is meaningful.
- LDAUTYPE=4: same as LDAUTYPE=1, but without exchange splitting (i.e., the total spin-up plus spin-down occupancy matrix is used). The double-counting term is given by
Warning: it is important to be aware of the fact that when using the DFT+U, in general the total energy will depend on the parameters and (LDAUU and LDAUJ, respectively). It is therefore not meaningful to compare the total energies resulting from calculations with different and/or , or and in case of Dudarev's approach (LDAUTYPE=2).
Note on bandstructure calculation: the CHGCAR file contains only information up to angular momentum quantum number =LMAXMIX for the on-site PAW occupancy matrices. When the CHGCAR file is read and kept fixed in the course of the calculations (ICHARG=11), the results will be necessarily not identical to a self-consistent run. The deviations are often large for DFT+U calculations. For the calculation of band structures within the DFT+U approach, it is hence strictly required to increase LMAXMIX to 4 ( elements) and 6 ( elements).
Related Tags and Sections
LDAU, LDAUL, LDAUU, LDAUJ, LDAUPRINT, LMAXMIX