LPEAD: Difference between revisions
(13 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
:<math> | :<math> | ||
|\mathbf{\nabla_{k}} | |\mathbf{\nabla_{k}} \tilde{u}_{n\mathbf{k}} \rangle = | ||
\sum_{n\neq n'} | \sum_{n\neq n'} | ||
\frac{| | \frac{| \tilde{u}_{n'\mathbf{k}} \rangle \langle \tilde{u}_{n'\mathbf{k}} | | ||
\frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]}{\partial \mathbf{k}} | \frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]}{\partial \mathbf{k}} | ||
| | | \tilde{u}_{n\mathbf{k}} \rangle}{\epsilon_{n\mathbf{k}}-\epsilon_{n'\mathbf{k}}} | ||
</math> | </math> | ||
Line 19: | Line 19: | ||
:<math> | :<math> | ||
\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right] | \left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right] | ||
|\mathbf{\nabla_{k}} | |\mathbf{\nabla_{k}} \tilde{u}_{n\mathbf{k}} \rangle | ||
=-\frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]} | =-\frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]} | ||
{\partial \mathbf{k}}| | {\partial \mathbf{k}}|\tilde{u}_{n\mathbf{k}} \rangle | ||
</math> | </math> | ||
Alternatively one may compute | Alternatively one may compute <math>\nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}}</math> from finite differences: | ||
:<math> | :<math> | ||
\frac{\partial | | \frac{\partial | \tilde{u}_{n\mathbf{k}_j} \rangle}{\partial k}= | ||
\frac{ie}{2\Delta k} \sum^N_{m=1} | \frac{ie}{2\Delta k} \sum^N_{m=1} | ||
\left[ | | \left[ | \tilde{u}_{m\mathbf{k}_{j+1}} \rangle | ||
S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j+1})\rangle - | S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j+1})\rangle - | ||
| | | \tilde{u}_{m\mathbf{k}_{j-1}} \rangle | ||
S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j-1})\rangle\right] | S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j-1})\rangle\right] | ||
</math> | </math> | ||
Line 39: | Line 39: | ||
:<math> | :<math> | ||
S_{nm}(\mathbf{k}_j,\mathbf{k}_{j+1})= | S_{nm}(\mathbf{k}_j,\mathbf{k}_{j+1})= | ||
\langle | \langle \tilde{u}_{n\mathbf{k}_{j}}| \tilde{u}_{m\mathbf{k}_{j+1}}\rangle | ||
</math>. | </math>. | ||
Line 47: | Line 47: | ||
These tags may be used in combination with {{TAG|LOPTICS}}=.TRUE. and {{TAG|LEPSILON}}=.TRUE.. | These tags may be used in combination with {{TAG|LOPTICS}}=.TRUE. and {{TAG|LEPSILON}}=.TRUE.. | ||
---- | |||
*N.B. Please note that {{TAG|LPEAD}} = .TRUE. '''is not supported for metallic systems'''. | |||
== Related | == Related tags and articles == | ||
{{TAG|IPEAD}}, | {{TAG|IPEAD}}, | ||
{{TAG|LEPSILON}}, | {{TAG|LEPSILON}}, | ||
Line 55: | Line 57: | ||
{{TAG|EFIELD_PEAD}}, | {{TAG|EFIELD_PEAD}}, | ||
[[Berry_phases_and_finite_electric_fields|Berry phases and finite electric fields]] | [[Berry_phases_and_finite_electric_fields|Berry phases and finite electric fields]] | ||
{{sc|LPEAD|Examples|Examples that use this tag}} | |||
---- | ---- | ||
[[Category:INCAR]][[Category:Berry phases]] | [[Category:INCAR tag]][[Category:Linear response]][[Category:Dielectric properties]][[Category:Berry phases]] |
Latest revision as of 07:59, 19 July 2022
LPEAD = .TRUE. | .FALSE
Default: LPEAD = .FALSE.
Description: for LPEAD=.TRUE., the derivative of the cell-periodic part of the orbitals w.r.t. k, |∇kunk⟩, is calculated using finite differences.
The derivative of the cell-periodic part of the orbitals w.r.t. k, k, |∇kunk⟩, may be written as:
where H(k) and S(k) are the Hamiltonian and overlap operator for the cell-periodic part of the orbitals, and the sum over n´ must include a sufficiently large number of unoccupied states.
It may also be found as the solution to the following linear Sternheimer equation (see LEPSILON):
Alternatively one may compute from finite differences:
where m runs over the N occupied bands of the system, Δk=kj+1-kj, and
- .
As mentioned in the context of the self-consistent response to finite electric fields one may derive analoguous expressions for |∇kunk⟩ using higher-order finite difference approximations.
When LPEAD=.TRUE., VASP will compute |∇kunk⟩ using the aforementioned finite difference scheme. The order of the finite difference approximation can be specified by means of the IPEAD-tag (default: IPEAD=4).
These tags may be used in combination with LOPTICS=.TRUE. and LEPSILON=.TRUE..
- N.B. Please note that LPEAD = .TRUE. is not supported for metallic systems.
Related tags and articles
IPEAD, LEPSILON, LOPTICS, LCALCEPS, EFIELD_PEAD, Berry phases and finite electric fields