LPEAD: Difference between revisions

From VASP Wiki
(Created page with '{{TAGDEF|LPEAD|.TRUE. {{!}} .FALSE|.FALSE.}} Description: for {{TAG|LPEAD}}=.TRUE., the derivative of the cell-periodic part of the orbitals w.r.t. '''k''', |∇<sub>'''k'''…')
 
 
(16 intermediate revisions by 3 users not shown)
Line 6: Line 6:


:<math>
:<math>
|\mathbf{\nabla_{k}} u_{n\mathbf{k}} \rangle =
|\mathbf{\nabla_{k}} \tilde{u}_{n\mathbf{k}} \rangle =
\sum_{n\neq n'}
\sum_{n\neq n'}
\frac{| u_{n'\mathbf{k}} \rangle \langle u_{n'\mathbf{k}} |
\frac{| \tilde{u}_{n'\mathbf{k}} \rangle \langle \tilde{u}_{n'\mathbf{k}} |
\frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]}{\partial \mathbf{k}}
\frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]}{\partial \mathbf{k}}
| u_{n\mathbf{k}} \rangle}{\epsilon_{n\mathbf{k}}-\epsilon_{n'\mathbf{k}}}
| \tilde{u}_{n\mathbf{k}} \rangle}{\epsilon_{n\mathbf{k}}-\epsilon_{n'\mathbf{k}}}
</math>
</math>


Line 19: Line 19:
:<math>
:<math>
\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]
\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]
|\mathbf{\nabla_{k}} u_{n\mathbf{k}} \rangle
|\mathbf{\nabla_{k}} \tilde{u}_{n\mathbf{k}} \rangle
=-\frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]}
=-\frac{\partial\left[H(\mathbf{k})-\epsilon_{n\mathbf{k}}S(\mathbf{k})\right]}
{\partial \mathbf{k}}|u_{n\mathbf{k}} \rangle
{\partial \mathbf{k}}|\tilde{u}_{n\mathbf{k}} \rangle
</math>
</math>


Alternatively one may compute |&nabla;<sub>'''k'''</sub>u<sub>n'''k'''</sub>&rang; from finite differences:
Alternatively one may compute <math>\nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}}</math> from finite differences:


:<math>
:<math>
\frac{\partial | u_{n\mathbf{k}_j} \rangle}{\partial k}=
\frac{\partial | \tilde{u}_{n\mathbf{k}_j} \rangle}{\partial k}=
\frac{ie}{2\Delta k} \sum^N_{m=1}
\frac{ie}{2\Delta k} \sum^N_{m=1}
\left[ | u_{m\mathbf{k}_{j+1}} \rangle
\left[ | \tilde{u}_{m\mathbf{k}_{j+1}} \rangle
S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j+1})\rangle -
S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j+1})\rangle -
| u_{m\mathbf{k}_{j-1}} \rangle
| \tilde{u}_{m\mathbf{k}_{j-1}} \rangle
S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j-1})\rangle\right]
S^{-1}_{mn}(\mathbf{k}_j,\mathbf{k}_{j-1})\rangle\right]
</math>
</math>


where ''m'' runs over the ''N'' occupied bands of the system, <math>\Delta k=\mathbf{k}_{j+1}-\mathbf{k}_j</math>, and
where ''m'' runs over the ''N'' occupied bands of the system, &Delta;''k''='''k'''<sub>j+1</sub>-'''k'''<sub>j</sub>, and


:<math>
:<math>
S_{nm}(\mathbf{k}_j,\mathbf{k}_{j+1})=
S_{nm}(\mathbf{k}_j,\mathbf{k}_{j+1})=
\langle u_{n\mathbf{k}_{j}}| u_{m\mathbf{k}_{j+1}}\rangle
\langle \tilde{u}_{n\mathbf{k}_{j}}| \tilde{u}_{m\mathbf{k}_{j+1}}\rangle
</math>.
</math>.
As mentioned in the context of [[Berry_phases_and_finite_electric_fields#Self-consistent_response_to_finite_electric_fields|the self-consistent response to finite electric fields]] one may derive analoguous expressions for |&nabla;<sub>'''k'''</sub>u<sub>n'''k'''</sub>&rang; using higher-order finite difference approximations.


When {{TAG|LPEAD}}=.TRUE., VASP will compute |&nabla;<sub>'''k'''</sub>u<sub>n'''k'''</sub>&rang; using the aforementioned finite difference scheme. The order of the finite difference approximation can be specified by means of the {{TAG|IPEAD}}-tag (default: {{TAG|IPEAD}}=4).
When {{TAG|LPEAD}}=.TRUE., VASP will compute |&nabla;<sub>'''k'''</sub>u<sub>n'''k'''</sub>&rang; using the aforementioned finite difference scheme. The order of the finite difference approximation can be specified by means of the {{TAG|IPEAD}}-tag (default: {{TAG|IPEAD}}=4).


These tags may be used in combination with {{TAG|LOPTICS}}=.TRUE. and {{TAG|LEPSILON}}=.TRUE..
These tags may be used in combination with {{TAG|LOPTICS}}=.TRUE. and {{TAG|LEPSILON}}=.TRUE..
----
*N.B. Please note that {{TAG|LPEAD}} = .TRUE. '''is not supported for metallic systems'''.


== Related Tags and Sections ==
== Related tags and articles ==
{{TAG|LPEAD}},
{{TAG|IPEAD}},
{{TAG|IPEAD}},
{{TAG|LEPSILON}},
{{TAG|LEPSILON}},
{{TAG|LOPTICS}},
{{TAG|LOPTICS}},
{{TAG|LCALCEPS}},
{{TAG|EFIELD_PEAD}},
[[Berry_phases_and_finite_electric_fields|Berry phases and finite electric fields]]
[[Berry_phases_and_finite_electric_fields|Berry phases and finite electric fields]]
{{sc|LPEAD|Examples|Examples that use this tag}}
----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]][[Category:Berry phases]]
[[Category:INCAR tag]][[Category:Linear response]][[Category:Dielectric properties]][[Category:Berry phases]]

Latest revision as of 07:59, 19 July 2022

LPEAD = .TRUE. | .FALSE
Default: LPEAD = .FALSE. 

Description: for LPEAD=.TRUE., the derivative of the cell-periodic part of the orbitals w.r.t. k, |∇kunk⟩, is calculated using finite differences.


The derivative of the cell-periodic part of the orbitals w.r.t. k, k, |∇kunk⟩, may be written as:

where H(k) and S(k) are the Hamiltonian and overlap operator for the cell-periodic part of the orbitals, and the sum over n´ must include a sufficiently large number of unoccupied states.

It may also be found as the solution to the following linear Sternheimer equation (see LEPSILON):

Alternatively one may compute from finite differences:

where m runs over the N occupied bands of the system, Δk=kj+1-kj, and

.

As mentioned in the context of the self-consistent response to finite electric fields one may derive analoguous expressions for |∇kunk⟩ using higher-order finite difference approximations.

When LPEAD=.TRUE., VASP will compute |∇kunk⟩ using the aforementioned finite difference scheme. The order of the finite difference approximation can be specified by means of the IPEAD-tag (default: IPEAD=4).

These tags may be used in combination with LOPTICS=.TRUE. and LEPSILON=.TRUE..


  • N.B. Please note that LPEAD = .TRUE. is not supported for metallic systems.

Related tags and articles

IPEAD, LEPSILON, LOPTICS, LCALCEPS, EFIELD_PEAD, Berry phases and finite electric fields

Examples that use this tag