ELPH SELFEN MU: Difference between revisions
(Remove elph release banner) |
(Add availability notice) |
||
(One intermediate revision by the same user not shown) | |||
Line 2: | Line 2: | ||
{{TAGDEF|ELPH_SELFEN_MU|[real array]|0.0}} | {{TAGDEF|ELPH_SELFEN_MU|[real array]|0.0}} | ||
Description: | Description: List of chemical potentials at which to compute the electron-phonon self-energy and transport coefficients. | ||
{{Available|6.5.0}} | |||
---- | ---- | ||
Line 43: | Line 44: | ||
Alternatively, one can specify the carrier density in units of <math>{m^{-3}}</math> by using the {{TAG|ELPH_SELFEN_CARRIER_DEN}} tag. | Alternatively, one can specify the carrier density in units of <math>{m^{-3}}</math> by using the {{TAG|ELPH_SELFEN_CARRIER_DEN}} tag. | ||
==Related tags and articles== | |||
* [[Transport coefficients including electron-phonon scattering|Transport calculations]] | |||
* {{TAG|ELPH_RUN}} | |||
* {{TAG|ELPH_SELFEN_CARRIER_DEN}} | |||
* {{TAG|ELPH_SELFEN_CARRIER_PER_CELL}} | |||
* {{TAG|ELPH_SELFEN_TEMPS}} | |||
* {{TAG|NELECT}} | |||
[[Category:INCAR tag]][[Category:Electron-phonon_interactions]] |
Latest revision as of 14:26, 17 January 2025
ELPH_SELFEN_MU = [real array]
Default: ELPH_SELFEN_MU = 0.0
Description: List of chemical potentials at which to compute the electron-phonon self-energy and transport coefficients.
Mind: Available as of VASP 6.5.0 |
Each chemical potential specified in the list will be added to the Fermi energy determined for the k point grid KPOINTS_ELPH. This Fermi energy might be different from the one determined in the self-consistent calculation if the k point meshes or ELPH_ISMEAR is different from ISMEAR. The Fermi energy from the self-consistent and non-self-consistent calculations can be read from the OUTCAR file. For example
$ grep "Fermi energy" OUTCAR Fermi energy: 3.5134142202 Fermi energy: 3.5314189274 eV (dense k-point grid)
In this example, ELPH_SELFEN_MU = 0.1
means that the chemical potential will be set to 3.5314189274+0.1 eV.
This can be verified Chemical potential calculation section of the OUTCAR file.
Number of electrons per cell ---------------------------- T= 0.00000000 18.00000452 T= 100.00000000 18.00000536 T= 200.00000000 18.00000792 T= 300.00000000 18.00001223 T= 400.00000000 18.00001792 T= 500.00000000 18.00002315 ---------------------------- Chemical potential ---------------------------- T= 0.00000000 3.63141893 T= 100.00000000 3.63141893 T= 200.00000000 3.63141893 T= 300.00000000 3.63141893 T= 400.00000000 3.63141893 T= 500.00000000 3.63141893 ----------------------------
For each of these chemical potentials and temperatures, the number of electrons per cell is computed and reported. These, in turn, can be converted to a carrier density by dividing be the volume of the unit cell. If more than one value is present in ELPH_SELFEN_MU, more columns are added to the list of chemical potentials above and more instances of the electron self-energy due to electron-phonon coupling accumulators are created. The number of rows is set by the list of temperatures in ELPH_SELFEN_TEMPS.
Alternatively, one can specify the carrier density in units of by using the ELPH_SELFEN_CARRIER_DEN tag.