ELPH DECOMPOSE: Difference between revisions
(Create page) |
(Add related info and categories) |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:ELPH_DECOMPOSE}} | {{DISPLAYTITLE:ELPH_DECOMPOSE}} | ||
{{TAGDEF|ELPH_DECOMPOSE|[string]|VDPR}} | {{TAGDEF|ELPH_DECOMPOSE|[string]|VDPR}} | ||
Line 11: | Line 10: | ||
We suggest two different combinations to define matrix elements: | We suggest two different combinations to define matrix elements: | ||
;{{TAGO|ELPH_DECOMPOSE|VDPR}} | ;{{TAGO|ELPH_DECOMPOSE|VDPR}} | ||
:"All-electron" matrix element{{cite|engel:prb:2022}} | :"All-electron" matrix element{{cite|engel:prb:2022}}{{cite|chaput:prb:2019}} | ||
;{{TAGO|ELPH_DECOMPOSE|VDQ}} | ;{{TAGO|ELPH_DECOMPOSE|VDQ}} | ||
:"Pseudo" matrix element{{cite|engel:prb:2022}}{{cite|engel:prb:2020}} | :"Pseudo" matrix element{{cite|engel:prb:2022}}{{cite|engel:prb:2020}} | ||
== Available contributions == | == Available contributions == | ||
;V | ;V - Derivative of pseudopotential, <math>\tilde{v}</math> | ||
:<math>g^{(\text{V})}_{m \mathbf{k}', n \mathbf{k}}</math> | :<math> | ||
;D | g^{(\text{V})}_{m \mathbf{k}', n \mathbf{k}, a} | ||
:<math>g^{(\text{D})}_{m \mathbf{k}', n \mathbf{k}}</math> | \equiv | ||
;P | \langle | ||
:<math>g^{(\text{P})}_{m \mathbf{k}', n \mathbf{k}}</math> | \tilde{\psi}_{m \mathbf{k}'} | | ||
;R | \frac{\partial \tilde{v}}{\partial u_{a}} | | ||
:<math>g^{(\text{R})}_{m \mathbf{k}', n \mathbf{k}}</math> | \tilde{\psi}_{n \mathbf{k}} | ||
;Q | \rangle | ||
:<math>g^{(\text{Q})}_{m \mathbf{k}', n \mathbf{k}}</math> | </math> | ||
;D - Derivative of PAW strength parameters, <math>D_{a, ij}</math> | |||
:<math> | |||
g^{(\text{D})}_{m \mathbf{k}', n \mathbf{k}, a} | |||
\equiv | |||
\sum_{bij} | |||
\langle | |||
\tilde{\psi}_{m \mathbf{k}'} | | |||
\tilde{p}_{b i} | |||
\rangle | |||
\frac{\partial D_{b, ij}}{\partial u_{a}} | |||
\langle | |||
\tilde{p}_{b j} | | |||
\tilde{\psi}_{n \mathbf{k}} | |||
\rangle | |||
</math> | |||
;P - Derivative of PAW projectors, <math>|\tilde{p}_{ai}\rangle</math> | |||
:<math> | |||
\begin{split} | |||
g^{(\text{P})}_{m \mathbf{k}', n \mathbf{k}, a} | |||
& \equiv | |||
\sum_{ij} | |||
\langle | |||
\tilde{\psi}_{m \mathbf{k}'} | | |||
\frac{\partial \tilde{p}_{a i}}{\partial u_{a}} | |||
\rangle | |||
( | |||
D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} | |||
) | |||
\langle | |||
\tilde{p}_{a j} | | |||
\tilde{\psi}_{n \mathbf{k}} | |||
\rangle | |||
\\ & + | |||
\sum_{ij} | |||
\langle | |||
\tilde{\psi}_{m \mathbf{k}'} | | |||
\tilde{p}_{a i} | |||
\rangle | |||
( | |||
D_{a, ij} - \varepsilon_{m \mathbf{k}'} Q_{a, ij} | |||
) | |||
\langle | |||
\frac{\partial \tilde{p}_{a j}}{\partial u_{a}} | | |||
\tilde{\psi}_{n \mathbf{k}} | |||
\rangle | |||
\end{split} | |||
</math> | |||
;R - Derivative of PAW partial waves, <math>|\phi_{ai}\rangle</math> and <math>|\tilde{\phi}_{ai}\rangle</math> | |||
:<math> | |||
g^{(\text{R})}_{m \mathbf{k}', n \mathbf{k}, a} | |||
\equiv | |||
(\varepsilon_{n \mathbf{k}} - \varepsilon_{m \mathbf{k}'}) | |||
\sum_{ij} | |||
\langle | |||
\tilde{\psi}_{m \mathbf{k}'} | | |||
\tilde{p}_{a i} | |||
\rangle | |||
R_{a, ij} | |||
\langle | |||
\tilde{p}_{a j} | | |||
\tilde{\psi}_{n \mathbf{k}} | |||
\rangle | |||
</math> | |||
:with <math> | |||
R_{a, ij} | |||
\equiv | |||
\langle | |||
\phi_{a i} | | |||
\frac{\partial \phi_{a j}}{\partial u_{a}} | |||
\rangle - | |||
\langle | |||
\tilde{\phi}_{a i} | | |||
\frac{\partial \tilde{\phi}_{a j}}{\partial u_{a}} | |||
\rangle | |||
</math> | |||
;Q - Derivative of PAW projectors, <math>|\tilde{p}_{ai}\rangle</math> (different eigenvalues) | |||
:<math> | |||
\begin{split} | |||
g^{(\text{Q})}_{m \mathbf{k}', n \mathbf{k}, a} | |||
& \equiv | |||
\sum_{ij} | |||
\langle | |||
\tilde{\psi}_{m \mathbf{k}'} | | |||
\frac{\partial \tilde{p}_{a i}}{\partial u_{a}} | |||
\rangle | |||
( | |||
D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} | |||
) | |||
\langle | |||
\tilde{p}_{a j} | | |||
\tilde{\psi}_{n \mathbf{k}} | |||
\rangle | |||
\\ & + | |||
\sum_{ij} | |||
\langle | |||
\tilde{\psi}_{m \mathbf{k}'} | | |||
\tilde{p}_{a i} | |||
\rangle | |||
( | |||
D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} | |||
) | |||
\langle | |||
\frac{\partial \tilde{p}_{a j}}{\partial u_{a}} | | |||
\tilde{\psi}_{n \mathbf{k}} | |||
\rangle | |||
\end{split} | |||
</math> | |||
==Related tags and articles== | |||
* [[Projector-augmented-wave_formalism]] | |||
* {{TAG|ELPH_RUN}} | |||
* {{TAG|ELPH_SELFEN_FAN}} | |||
* {{TAG|ELPH_SELFEN_DW}} | |||
[[Category:INCAR tag]][[Category:Electron-phonon_interactions]] | |||
== References == | == References == |
Latest revision as of 15:52, 19 December 2024
ELPH_DECOMPOSE = [string]
Default: ELPH_DECOMPOSE = VDPR
Description: Chooses which contributions to include in the computation of the electron-phonon matrix elements.
The electron-phonon matrix element can be formulated in the projector-augmented-wave (PAW) method in terms of individual contributions[1]. Each contribution can be included by specifying the associated letter in ELPH_DECOMPOSE. We suggest two different combinations to define matrix elements:
ELPH_DECOMPOSE = VDPR
- "All-electron" matrix element[1][2]
ELPH_DECOMPOSE = VDQ
- "Pseudo" matrix element[1][3]
Available contributions
- V - Derivative of pseudopotential,
- D - Derivative of PAW strength parameters,
- P - Derivative of PAW projectors,
- R - Derivative of PAW partial waves, and
- with
- Q - Derivative of PAW projectors, (different eigenvalues)
Related tags and articles
References
- ↑ a b c M. Engel, H. Miranda, L. Chaput, A. Togo, C. Verdi, M. Marsman, and G. Kresse, Zero-point renormalization of the band gap of semiconductors and insulators using the projector augmented wave method, Phys. Rev. B 106, 094316 (2022).
- ↑ L. Chaput, A. Togo, and I. Tanaka, Finite-displacement computation of the electron-phonon interaction within the projector augmented-wave method, Phys. Rev. B 100, 174304 (2019).
- ↑ M. Engel, M. Marsman, C. Franchini, and G. Kresse, Electron-phonon interactions using the projector augmented-wave method and Wannier functions, Phys. Rev. B 101, 184302 (2020).