LBERRY: Difference between revisions

From VASP Wiki
No edit summary
 
(21 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{TAGDEF|LBERRY|[logical]|.FALSE.}}
{{TAGDEF|LBERRY|[logical]|.FALSE.}}


Description: This tag is used in the the evaluationof the Berry phase expression for the electronic polarization of an insulating system.
Description: This tag is used in the the evaluation of the Berry phase expression for the electronic polarization of an insulating system.
 
----  
----  


Line 7: Line 8:


Setting {{TAG|LBERRY}}=''.TRUE.'' in the {{TAG|INCAR}} file switches on the evaluation of the Berry phase expression for the electronic polarization of an insulating system, as modified for the application of USPP's and PAW datasets <ref name="berryformalism1"/><ref name="berryformalism2"/><ref name="berryformalism3"/><ref name="berryformalism4"/><ref name="berryformalism5"/><ref name="berryultrasoft"/><ref name="berrymmars"/>.
Setting {{TAG|LBERRY}}=''.TRUE.'' in the {{TAG|INCAR}} file switches on the evaluation of the Berry phase expression for the electronic polarization of an insulating system, as modified for the application of USPP's and PAW datasets <ref name="berryformalism1"/><ref name="berryformalism2"/><ref name="berryformalism3"/><ref name="berryformalism4"/><ref name="berryformalism5"/><ref name="berryultrasoft"/><ref name="berrymmars"/>.
In addition, the following keywords must be specified in order to generate the meshof k-points:
In addition, the following keywords must be specified in order to generate the mesh of k-points:


  IGPAR = 1|2|3
  IGPAR = 1|2|3
{{TAG|IGPAR}} tag specifies the socalled parallel or <math>\bold{G}_{\parallel}</math> direction in the integration over the reciprocal space unit cell.
{{TAG|IGPAR}} tag specifies the socalled parallel or <math>\bold{G}_{\parallel}</math> direction in the integration over the reciprocal space unit cell.


  NPPSTR = number of points on the strings in the {{TAG|IGPAR}} direction
  NPPSTR = number of points on the strings in the IGPAR direction
This tag specifies the number of k-points on the strings <math>\bold{k}_{j} = \bold{k}_{\perp} + j\bold{G}_{\parallel}/\mathrm{NPPSTR} </math> (with <math> j=0,..,\mathrm{NPPSTR}-1</math>).
{{TAG|NPPSTR}} specifies the number of k-points on the strings <math>\bold{k}_{j} = \bold{k}_{\perp} + j\bold{G}_{\parallel}/\mathrm{NPPSTR} </math> (with <math> j=0,..,\mathrm{NPPSTR}-1</math>).


  DIPOL = center of cell (fractional coordinates)
  DIPOL = center of cell (fractional coordinates)
This tag specifies the origin with respect to which the ionic contribution to the dipole moment in the cell is calculated. When comparing changes in this contribution due to the displacement of an ion, this center should be chosen in such a way that the ions in the distorted and the undistorted structure remain on the same side of {{TAG|DIPOL}} (in terms of a minimum image convention).
{{TAG|DIPOL}} specifies the origin with respect to which the ionic contribution to the dipole moment in the cell is calculated. When comparing changes in this contribution due to the displacement of an ion, this center should be chosen in such a way that the ions in the distorted and the undistorted structure remain on the same side of {{TAG|DIPOL}} (in terms of a minimum image convention).




Line 24: Line 25:


Caluclation1:
Caluclation1:
It is usually convenient to calculate the self-consistent Kohn-Sham potential of the undistorted structure, using a symmetry reduced <math>6$\times$6$\times$6</math> Monkhorst-Pack sampling of the Brillouin zone. Using for instance the following {{TAG|INCAR}} file:
It is usually convenient to calculate the self-consistent Kohn-Sham potential of the undistorted structure, using a symmetry reduced <math>6\times6\times6</math> Monkhorst-Pack sampling of the Brillouin zone. Using for instance the following {{TAG|INCAR}} file:
  PREC  = Med
  PREC  = Med
  ISMEAR = 0
  ISMEAR = 0
Line 48: Line 49:


Calculation 2:
Calculation 2:
To calculate the electronic contribution to the polarization, along the reciprocal lattice vector <math>\bold{G}_{1} (i.e. \bold{P} \cdot \bold{G}_{1}), add the following lines to the {{TAG|INCAR}} file:
To calculate the electronic contribution to the polarization, along the reciprocal lattice vector <math>\bold{G}_{1}</math> (i.e. <math> \bold{P} \cdot \bold{G}_{1} </math>), add the following lines to the {{TAG|INCAR}} file:
  LBERRY = .TRUE.
  LBERRY = .TRUE.
  IGPAR  = 1
  IGPAR  = 1
Line 80: Line 81:
   0.0000000000000000  0.0000000000000000  0.0000000000000000
   0.0000000000000000  0.0000000000000000  0.0000000000000000
   0.5100000000000000  0.5100000000000000  0.4900000000000000
   0.5100000000000000  0.5100000000000000  0.4900000000000000
This corresponds to a displacement of the F ion by <math>0.01\times 4.51$\AA</math> along the <math>\hat{z}</math> direction. The output of the Berry phase calculation using {{TAG|IGPAR}}=1 should now look similar to:
This corresponds to a displacement of the F ion by <math>0.01\times 4.51\AA</math> along the <math>\hat{z}</math> direction. The output of the Berry phase calculation using {{TAG|IGPAR}}=1 should now look similar to:
                                 e<r>_ev=(    0.00000    0.00000    0.00004 ) e*Angst
                                 e<r>_ev=(    0.00000    0.00000    0.00004 ) e*Angst
                                 e<r>_bp=(    0.00000    0.18028    0.18028 ) e*Angst  
                                 e<r>_bp=(    0.00000    0.18028    0.18028 ) e*Angst  
Line 97: Line 98:
*The electronic polarization of the undistorted structure is then given by:
*The electronic polarization of the undistorted structure is then given by:


<math> <\mathrm{r}>_{\mathrm{el,undist}}=e<\mathrm{r}>_{\mathrm{ev,undist}}+e<\mathrm{r}>_{\mathrm{bp,undist}} </math>
<math> e<\mathrm{r}>_{\mathrm{el,undist}}=e<\mathrm{r}>_{\mathrm{ev,undist}}+e<\mathrm{r}>_{\mathrm{bp,undist}} </math>


*Repeat the above three steps for the results obtained using the distorted structure (Calculations 6 to 8), to evaluate <math>e<\mathrm{r}>_{\mathrm{ev,dist}}</math>,
*Repeat the above three steps for the results obtained using the distorted structure (Calculations 6 to 8), to evaluate <math>e<\mathrm{r}>_{\mathrm{ev,dist}}</math>, <math>e<\mathrm{r}>_{\mathrm{bp,dist}}</math>, and <math>e<\mathrm{r}>_{\mathrm{el,dist}}</math>
<math>e<\mathrm{r}>_{\mathrm{bp,dist}}</math>, and <math>e<\mathrm{r}>_{\mathrm{el,dist}}</math>


*The change in the electronic contribution to the polarization due to the F-sublattice displacement, <math>e\Delta<\mathrm{r}>_\mathrm{el}</math> is then given by <math>e<\mathrm{r}>_{\mathrm{el,dist}}-e<\mathrm{r}>_{\mathrm{el,undist}}</math>
*The change in the electronic contribution to the polarization due to the F-sublattice displacement, <math>e\Delta<\mathrm{r}>_\mathrm{el}</math> is then given by <math>e<\mathrm{r}>_{\mathrm{el,dist}}-e<\mathrm{r}>_{\mathrm{el,undist}}</math>
Line 109: Line 109:
<math> \Delta\mathrm{p[ion]}=\mathrm{p[ion]}_{\mathrm{dist}}-\mathrm{p[ion]}_{\mathrm{undist}} </math>.
<math> \Delta\mathrm{p[ion]}=\mathrm{p[ion]}_{\mathrm{dist}}-\mathrm{p[ion]}_{\mathrm{undist}} </math>.


<math> e\Delta<\mathrm{r}> </math> is then given by <math> \Delta \mathrm{p[ion]}+e\Delta<\mathrm{r}>_\mathrm{el} </math>. In this example we find <math> e\Delta<\mathrm{r}>=0.04489</math> electrons <math>\AA</math>. Considering that the moved F-sublattice was displaced by 0.045102 \AA, this calculation yields a Born effective charge for fluorine in NaF of <math>Z^{*}=-0.995 </math>.
<math> e\Delta<\mathrm{r}> </math> is then given by <math> \Delta \mathrm{p[ion]}+e\Delta<\mathrm{r}>_\mathrm{el} </math>. In this example we find <math> e\Delta<\mathrm{r}>=0.04489</math> electrons <math>\AA</math>. Considering that the moved F-sublattice was displaced by 0.045102 <math>\AA </math>, this calculation yields a Born effective charge for fluorine in NaF of <math>Z^{*}=-0.995 </math>.


N.B.(I) In the case of spinpolarized calculations ({{TAG|ISPIN}}=2),the Berry phase of the orbitals is evaluated separately for each spin direction. This means a ''grep'' on "<math><\mathrm<r}> </math>" will yield two sets of <math> <\mathrm{r}>_{\mathrm{ev}} </math> and <math> <\mathrm{r}>_{\mathrm{bp}}</math> terms, which have to be added to oneanother to obtain the total electronic polarization of the system.
N.B.(I) In the case of spinpolarized calculations ({{TAG|ISPIN}}=2),the Berry phase of the orbitals is evaluated separately for each spin direction. This means a ''grep'' on "<math><\mathrm{r}> </math>" will yield two sets of <math> <\mathrm{r}>_{\mathrm{ev}} </math> and <math> <\mathrm{r}>_{\mathrm{bp}}</math> terms, which have to be added to oneanother to obtain the total electronic polarization of the system.


N.B.(II) One should take care of the fact that the calculated "Berry phase" term <math> <\mathrm{r}>_{\mathrm{bp}}</math> along <math>\mathbf{G}_{i}</math> is, in principle, obtained modulo a certain period, determined by the lattice vector <math> \mathbf{R}_{i} </math> (<math>\mathbf{R}_{i} \cdot \mathbf{G}_{i} = 2 \pi </math>), the spin multiplicity of the orbitals, the volume of the unit cell, the number of k-point in the "perpendicular" grid, and some aspects of the symmetry of the system. More information on this particular aspect of the Berry phase calculations can be found in references <ref name="berryformalism1"/><ref name="berryformalism2"/><ref name="berryformalism3"/><ref name="berryformalism4"/><ref name="berryformalism5"/><ref name="berryultrasoft"/><ref name="berrymmars"/>.
N.B.(II) One should take care of the fact that the calculated "Berry phase" term <math> <\mathrm{r}>_{\mathrm{bp}}</math> along <math>\mathbf{G}_{i}</math> is, in principle, obtained modulo a certain period, determined by the lattice vector <math> \mathbf{R}_{i} </math> (<math>\mathbf{R}_{i} \cdot \mathbf{G}_{i} = 2 \pi </math>), the spin multiplicity of the orbitals, the volume of the unit cell, the number of k-point in the "perpendicular" grid, and some aspects of the symmetry of the system. More information on this particular aspect of the Berry phase calculations can be found in references <ref name="berryformalism1"/><ref name="berryformalism2"/><ref name="berryformalism3"/><ref name="berryformalism4"/><ref name="berryformalism5"/><ref name="berrymmars"/>.


== Related tags and articles ==
{{TAG|IGPAR}}, {{TAG|DIPOL}}, {{TAG|NPPSTR}}, {{TAG|LCALCPOL}}, {{TAG|LCALCEPS}}, {{TAG|LCALCEPS}}, {{TAG|ICHARG}}, {{TAG|ISPIN}}
{{sc|LBERRY|Examples|Examples that use this tag}}


== References ==
== References ==
Line 126: Line 132:
<ref name="berrymmars">[Available online at http://cms.mpi.univie.ac.at/vasp/Welcome.html.]</ref>
<ref name="berrymmars">[Available online at http://cms.mpi.univie.ac.at/vasp/Welcome.html.]</ref>
</references>
</references>
----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]]
[[Category:INCAR tag]][[Category:Linear response]][[Category:Dielectric properties]][[Category:Berry phases]][[Category:Howto]]

Latest revision as of 07:51, 19 July 2022

LBERRY = [logical]
Default: LBERRY = .FALSE. 

Description: This tag is used in the the evaluation of the Berry phase expression for the electronic polarization of an insulating system.


As of VASP.5.2, calculating the macroscopic polarization and Born effective charges along the lines of the following example (using LBERRY=.TRUE. etc) is unnecessary. The use of LCALCPOL or LCALCEPS is much more convenient.

Setting LBERRY=.TRUE. in the INCAR file switches on the evaluation of the Berry phase expression for the electronic polarization of an insulating system, as modified for the application of USPP's and PAW datasets [1][2][3][4][5][6][7]. In addition, the following keywords must be specified in order to generate the mesh of k-points:

IGPAR = 1|2|3

IGPAR tag specifies the socalled parallel or direction in the integration over the reciprocal space unit cell.

NPPSTR = number of points on the strings in the IGPAR direction

NPPSTR specifies the number of k-points on the strings (with ).

DIPOL = center of cell (fractional coordinates)

DIPOL specifies the origin with respect to which the ionic contribution to the dipole moment in the cell is calculated. When comparing changes in this contribution due to the displacement of an ion, this center should be chosen in such a way that the ions in the distorted and the undistorted structure remain on the same side of DIPOL (in terms of a minimum image convention).


An example: The fluorine displacement dipole (Born effective charge) in NaF

First one needs to determine the electronic polarization of the undistorted NaF.

Caluclation1: It is usually convenient to calculate the self-consistent Kohn-Sham potential of the undistorted structure, using a symmetry reduced Monkhorst-Pack sampling of the Brillouin zone. Using for instance the following INCAR file:

PREC   = Med
ISMEAR = 0
EDIFF  = 1E-6

KPOINTS file:

6x6x6
 0
Gamma
 6 6 6
 0 0 0 

POSCAR file:

NaF
 4.5102
 0.0 0.5 0.5
 0.5 0.0 0.5
 0.5 0.5 0.0
1 1
Direct
  0.0000000000000000  0.0000000000000000  0.0000000000000000
  0.5000000000000000  0.5000000000000000  0.5000000000000000

and LDA Na_sv and F PAW datasets.


Calculation 2: To calculate the electronic contribution to the polarization, along the reciprocal lattice vector (i.e. ), add the following lines to the INCAR file:

LBERRY = .TRUE.
IGPAR  = 1
NPPSTR = 8
DIPOL = 0.25 0.25 0.25

Setting LBERRY=.TRUE. automatically sets ICHARG=11, i.e., the charge density of the previous calculation is read and kept fixed, and only the orbitals and one-electron eigenenergies are recalculated for the new k-point set. This is advantageous, since the number of k-points used to evaluate the Berry phase expression can be quite large, and precalculating the charge density (ICHARG=11) saves significant CPU time.

The OUTCAR will now contain the following lines:

                                e<r>_ev=(     0.00000     0.00000     0.00000 ) e*Angst
                                e<r>_bp=(     0.00000     0.00000     0.00000 ) e*Angst
 Total electronic dipole moment: p[elc]=(     0.00000     0.00000     0.00000 ) e*Angst 
            ionic dipole moment: p[ion]=(     2.25510     2.25510     2.25510 ) e*Angst


Calculations 3 and 4: The procedure mentioned under Calculation 2 now has to be repeated with IGPAR=2 and IGPAR=3 (again using the charge density obtained from Calculation 1), to obtain the contributions to the electronic polarization along and , respectively.


Calculations 5 to 8: To calculate the change in the electronic polarization of NaF due to the displacement of the fluorine sublattice, one should repeat Calculations 1 to 4, using the following POSCAR file:

NaF
 4.5102
 0.0 0.5 0.5
 0.5 0.0 0.5
 0.5 0.5 0.0
1 1
Direct
  0.0000000000000000  0.0000000000000000  0.0000000000000000
  0.5100000000000000  0.5100000000000000  0.4900000000000000

This corresponds to a displacement of the F ion by along the direction. The output of the Berry phase calculation using IGPAR=1 should now look similar to:

                                e<r>_ev=(     0.00000     0.00000     0.00004 ) e*Angst
                                e<r>_bp=(     0.00000     0.18028     0.18028 ) e*Angst 

 Total electronic dipole moment: p[elc]=(     0.00000     0.18028     0.18031 ) e*Angst
            ionic dipole moment: p[ion]=(     2.25510     2.25510     1.93939 ) e*Angst


Collecting the results: The change in the electronic contribution to the polarization due to the F-sublattice displacement should be calculated as follows:

  • Take the average of the terms obtained in calculations 2 to 4. Lets call this
  • Add the terms obtained in calculations 2 to 4. Lets call this
  • The electronic polarization of the undistorted structure is then given by:

  • Repeat the above three steps for the results obtained using the distorted structure (Calculations 6 to 8), to evaluate , , and
  • The change in the electronic contribution to the polarization due to the F-sublattice displacement, is then given by


To calculate the total change in polarization, , one should account for the ionic contribution to this change. This contribution can be calculated from p[ion] as given above from Calculations 2 and 5: .

is then given by . In this example we find electrons . Considering that the moved F-sublattice was displaced by 0.045102 , this calculation yields a Born effective charge for fluorine in NaF of .

N.B.(I) In the case of spinpolarized calculations (ISPIN=2),the Berry phase of the orbitals is evaluated separately for each spin direction. This means a grep on "" will yield two sets of and terms, which have to be added to oneanother to obtain the total electronic polarization of the system.

N.B.(II) One should take care of the fact that the calculated "Berry phase" term along is, in principle, obtained modulo a certain period, determined by the lattice vector (), the spin multiplicity of the orbitals, the volume of the unit cell, the number of k-point in the "perpendicular" grid, and some aspects of the symmetry of the system. More information on this particular aspect of the Berry phase calculations can be found in references [1][2][3][4][5][7].


Related tags and articles

IGPAR, DIPOL, NPPSTR, LCALCPOL, LCALCEPS, LCALCEPS, ICHARG, ISPIN

Examples that use this tag

References

  1. a b R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
  2. a b D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993).
  3. a b R. Resta, Ferroelectrtics 136, 51 (1992).
  4. a b R. Resta, Rev. Mod. Phys. 66, 899 (1994).
  5. a b [R. Resta, in Berry Phase in Electronic Wavefunctions, Troisième Cycle de la Physique en Suisse Romande, Année Academique 1995-96, (1996).]
  6. [D. Vanderbilt and R. D. King-Smith, in Electronic polarization in the ultrasoft pseudopotential formalism, Unpublished report, (1998).]
  7. a b [Available online at http://cms.mpi.univie.ac.at/vasp/Welcome.html.]