IMIX: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{TAGDEF|IMIX|0 {{!}} 1 {{!}} 2 {{!}} 4|4}} | {{TAGDEF|IMIX|0 {{!}} 1 {{!}} 2 {{!}} 4|4}} | ||
Description: {{TAG|IMIX}} specifies the type of mixing. | Description: {{TAG|IMIX}} specifies the type of [[:Category:Density mixing|density mixing]]. | ||
---- | ---- | ||
=={{TAG|IMIX}}=0: No mixing == | |||
::<math>\rho_{\rm mix}=\rho_{\rm out}\,</math> | ::<math>\rho_{\rm mix}=\rho_{\rm out}\,</math> | ||
=={{TAG|IMIX}}=1: Kerker mixing== | |||
:For Kerker mixing<ref name="kerker:prb:81"/>, the mixed density is given by | |||
::<math>\rho_{\rm mix}\left(G\right)=\rho_{\rm in}\left(G\right)+A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)</math> | ::<math>\rho_{\rm mix}\left(G\right)=\rho_{\rm in}\left(G\right)+A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)</math> | ||
:with <math>A</math>={{TAG|AMIX}} and <math>B</math>={{TAG|BMIX}} | :with <math>A</math>={{TAG|AMIX}} and <math>B</math>={{TAG|BMIX}}. If {{TAG|BMIX}} is very small, e.g., {{TAG|BMIX}}=0.0001, a straight mixing is obtained. | ||
{{NB|mind|{{TAG|BMIX}}{{=}}0 might cause floating-point exceptions on some platforms.|:}} | |||
=={{TAG|IMIX}}=2: Variant of Tchebycheff mixing== | |||
:VASP uses a variant of the popular Tchebycheff-mixing scheme<ref name="akai:jpc:85"/>. Here, the following second order equation of motion is used: | |||
::<math>\ddot{\rho}_{\rm in}\left(G\right) = 2*A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)-\mu \dot{\rho}_{\rm in}\left(G\right)</math> | ::<math>\ddot{\rho}_{\rm in}\left(G\right) = 2*A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)-\mu \dot{\rho}_{\rm in}\left(G\right)</math> | ||
:with <math>A</math>={{TAG|AMIX}}, <math>B</math>={{TAG|BMIX}}, and <math>\mu</math>={{TAG|AMIN}}. | :with <math>A</math>={{TAG|AMIX}}, <math>B</math>={{TAG|BMIX}}, and <math>\mu</math>={{TAG|AMIN}}. A velocity Verlet algorithm is used to integrate this equation. The discretized equation reads: | ||
::<math>\dot{\rho}_{N+1/2} = \Bigl(\left(1-\mu/2\right) \dot{\rho}_{N-1/2} + 2*F_N \Bigr)/\left(1+\mu/2\right)</math> | ::<math>\dot{\rho}_{N+1/2} = \Bigl(\left(1-\mu/2\right) \dot{\rho}_{N-1/2} + 2*F_N \Bigr)/\left(1+\mu/2\right)</math> | ||
:where | :where | ||
::<math>F\left(G\right)=A\frac{G^2}{G^2+B^2} \Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)</math> | ::<math>F\left(G\right)=A\frac{G^2}{G^2+B^2} \Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)</math> | ||
:and | :and | ||
::<math>\rho_{N+1}=\rho_{N+1}+\dot{\rho}_{N+1/2}</math>. | ::<math>\rho_{N+1}=\rho_{N+1}+\dot{\rho}_{N+1/2}</math>, | ||
:where the index ''N'' is the electronic iteration, and ''F'' is the force acting on the charge. | |||
:For {{TAG|BMIX}}≈0, no model for the dielectric matrix is used. | :For {{TAG|BMIX}}≈0, no model for the dielectric matrix is used. For <math>\mu=2</math> a simple straight mixing is obtained. Therefore, <math>\mu=2</math> corresponds to maximal damping, while <math>\mu=0</math> implies no damping. To determine the optimal parameters for <math>\mu</math> and {{TAG|AMIX}}, first converge to the ground state with the Pulay mixer ({{TAG|IMIX}}=4). Then, search for the the eigenvalues of the charge-dielectric matrix in the {{FILE|OUTCAR}} file at the last occurrence of | ||
eigenvalues of (default mixing * dielectric matrix) | eigenvalues of (default mixing * dielectric matrix) | ||
: | :The optimal parameters are then given by: | ||
::{| | ::{| | ||
|{{TAG|AMIX}}|| ||<math>={\rm AMIX}({\rm as\; used\; in\; Pulay\; run})*{\rm smallest\; eigenvalue}</math> | |{{TAG|AMIX}}|| ||<math>={\rm AMIX}({\rm as\; used\; in\; Pulay\; run})*{\rm smallest\; eigenvalue}</math> | ||
Line 37: | Line 30: | ||
|} | |} | ||
=={{TAG|IMIX}}=4: Broyden's 2<sup>nd</sup> method and Pulay-mixing method (default) == | |||
:A | :For {{TAG|WC}}=0, VASP uses Broyden's 2<sup>nd</sup> method,<ref name="bluegel:thesis:88"/><ref name="johnson:prb:88"/> and, for {{TAG|WC}}>0, VASP uses Pulay-mixing method<ref name="pulay:cpl:80"/>. | ||
: | :The default is a Pulay mixer with an initial approximation for the charge-dielectric function according to Kerker<ref name="kerker:prb:81"/> | ||
::<math>A\times\max\left(\frac{G^2}{G^2+B^2},A_{\rm min}\right)</math> | |||
:where <math>A</math>={{TAG|AMIX}}, <math>B</math>={{TAG|BMIX}}, and <math>A_{\rm min}</math>={{TAG|AMIN}}. | |||
== Related | :{{TAG|AMIN}}=0.4 usually yields good convergence. {{TAG|AMIX}} strongly depends on the system, for instance, it should be small, e.g., {{TAG|AMIX}}= 0.02, for metals. | ||
:In the Broyden scheme, the functional form of the initial mixing matrix is determined by {{TAG|AMIX}} and {{TAG|BMIX}} or the {{TAG|INIMIX}} tag. The metric used in the Broyden scheme is specified through {{TAG|MIXPRE}}. | |||
== Related tags and articles == | |||
{{TAG|INIMIX}}, | {{TAG|INIMIX}}, | ||
{{TAG|MAXMIX}}, | {{TAG|MAXMIX}}, | ||
Line 51: | Line 49: | ||
{{TAG|MIXPRE}}, | {{TAG|MIXPRE}}, | ||
{{TAG|WC}} | {{TAG|WC}} | ||
{{sc|IMIX|Examples|Examples that use this tag}} | |||
== References == | == References == | ||
Line 61: | Line 61: | ||
</references> | </references> | ||
---- | ---- | ||
[[Category:INCAR]][[Category: | [[Category:INCAR tag]][[Category:Density mixing]] |
Latest revision as of 11:35, 18 October 2024
IMIX = 0 | 1 | 2 | 4
Default: IMIX = 4
Description: IMIX specifies the type of density mixing.
IMIX=0: No mixing
IMIX=1: Kerker mixing
- For Kerker mixing[1], the mixed density is given by
- with =AMIX and =BMIX. If BMIX is very small, e.g., BMIX=0.0001, a straight mixing is obtained.
Mind: BMIX=0 might cause floating-point exceptions on some platforms.
IMIX=2: Variant of Tchebycheff mixing
- VASP uses a variant of the popular Tchebycheff-mixing scheme[2]. Here, the following second order equation of motion is used:
- with =AMIX, =BMIX, and =AMIN. A velocity Verlet algorithm is used to integrate this equation. The discretized equation reads:
- where
- and
- ,
- where the index N is the electronic iteration, and F is the force acting on the charge.
- For BMIX≈0, no model for the dielectric matrix is used. For a simple straight mixing is obtained. Therefore, corresponds to maximal damping, while implies no damping. To determine the optimal parameters for and AMIX, first converge to the ground state with the Pulay mixer (IMIX=4). Then, search for the the eigenvalues of the charge-dielectric matrix in the OUTCAR file at the last occurrence of
eigenvalues of (default mixing * dielectric matrix)
- The optimal parameters are then given by:
IMIX=4: Broyden's 2nd method and Pulay-mixing method (default)
- For WC=0, VASP uses Broyden's 2nd method,[3][4] and, for WC>0, VASP uses Pulay-mixing method[5].
- The default is a Pulay mixer with an initial approximation for the charge-dielectric function according to Kerker[1]
- where =AMIX, =BMIX, and =AMIN.
- AMIN=0.4 usually yields good convergence. AMIX strongly depends on the system, for instance, it should be small, e.g., AMIX= 0.02, for metals.
- In the Broyden scheme, the functional form of the initial mixing matrix is determined by AMIX and BMIX or the INIMIX tag. The metric used in the Broyden scheme is specified through MIXPRE.
Related tags and articles
INIMIX, MAXMIX, AMIX, BMIX, AMIX_MAG, BMIX_MAG, AMIN, MIXPRE, WC
References
- ↑ a b G. P. Kerker, Phys. Rev. B 23, 3082 (1981).
- ↑ H. Akai and P.H. Dederichs, J. Phys. C 18 (1985).
- ↑ S. Blügel, PhD Thesis, RWTH Aachen (1988).
- ↑ D. D. Johnson, Phys. Rev. B38, 12807 (1988).
- ↑ P. Pulay, Chem. Phys. Lett. 73, 393 (1980).