Angular functions: Difference between revisions
Vaspmaster (talk | contribs) No edit summary |
No edit summary |
||
(12 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
:{| border=" | :{| border="0" cellspacing="0" cellpadding="5" style="border:1px solid" | ||
|- | |- | ||
|+ real spherical harmonics | |+ real spherical harmonics | ||
! ''l'' | ! align="left"|''l'' | ||
! ''m'' | ! align="left"|''m'' | ||
! Name | ! align="left" width="80"|Name | ||
! ''Y<sub>lm</sub>'' | ! align="left"|''Y<sub>lm</sub>'' | ||
|- | |- | ||
| 0 || 1 || s || <math>\frac{1}{\sqrt{4\pi}}</math> | |style="border-bottom:1px solid"| | ||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |||
| 0 || 1 || s ||<math>\frac{1}{\sqrt{4\pi}}</math> | |||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |- | ||
| 1 || -1 || py || <math>\sqrt{\frac{3}{4\pi}}\frac{y}{r}</math> | | 1 || -1 || py || <math>\sqrt{\frac{3}{4\pi}}\frac{y}{r}</math> | ||
Line 13: | Line 23: | ||
| 1 || 0 || pz || <math>\sqrt{\frac{3}{4\pi}}\frac{z}{r}</math> | | 1 || 0 || pz || <math>\sqrt{\frac{3}{4\pi}}\frac{z}{r}</math> | ||
|- | |- | ||
| 1 || 1 || | | 1 || 1 || px || <math>\sqrt{\frac{3}{4\pi}}\frac{x}{r}</math> | ||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |- | ||
| 2 || -2 || dxy || <math>\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2}</math> | | 2 || -2 || dxy || <math>\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2}</math> | ||
Line 25: | Line 39: | ||
|- | |- | ||
| 2 || 2 || dx2-y2 || <math>\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2}</math> | | 2 || 2 || dx2-y2 || <math>\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2}</math> | ||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |||
| 3 || -3 || fy(3x2-y2) || <math>\frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(3x^2-y^2)y}{r^3}</math> | |||
|- | |||
| 3 || -2 || fxyz || <math>\frac{1}{2}\sqrt{\frac{105}{\pi}}\frac{xyz}{r^3}</math> | |||
|- | |||
| 3 || -1 || fyz2 || <math>\frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)y}{r^3}</math> | |||
|- | |||
| 3 || 0 || fz3 || <math>\frac{1}{4}\sqrt{\frac{7}{\pi}}\frac{(5z^2-3r^2)z}{r^3}</math> | |||
|- | |||
| 3 || 1 || fxz2 || <math>\frac{1}{4}\sqrt{\frac{21}{2\pi}}\frac{(5z^2-r^2)x}{r^3}</math> | |||
|- | |||
| 3 || 2 || fz(x2-y2) || <math>\frac{1}{4}\sqrt{\frac{105}{\pi}}\frac{(x^2-y^2)z}{r^3}</math> | |||
|- | |||
| 3 || 3 || fx(x2-3y2) || <math>\frac{1}{4}\sqrt{\frac{35}{2\pi}}\frac{(x^2-3y^2)x}{r^3}</math> | |||
|} | |||
:{| border="0" cellspacing="0" cellpadding="5" style="border:1px solid" | |||
|- | |||
|+ hybrid angular functions | |||
|- | |||
| sp | |||
|align="left" width="80"| sp-1 || <math>\frac{1}{\sqrt 2}\rm s+\frac{1}{\sqrt 2}\rm p_x</math> | |||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |||
| || sp-2 || <math>\frac{1}{\sqrt 2}\rm s-\frac{1}{\sqrt 2}\rm p_x</math> | |||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |||
| sp2 || sp2-1 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x+\frac{1}{\sqrt 2}\rm p_y</math> | |||
|- | |||
| || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x-\frac{1}{\sqrt 2}\rm p_y</math> | |||
|- | |||
| || sp2-2 || <math>\frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm p_x</math> | |||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |||
| sp3 || sp3-1 || <math>\frac{1}{2}(\rm s+\rm p_x+\rm p_y+\rm p_z)</math> | |||
|- | |||
| || sp3-2 || <math>\frac{1}{2}(\rm s+\rm p_x-\rm p_y-\rm p_z)</math> | |||
|- | |||
| || sp3-2 || <math>\frac{1}{2}(\rm s-\rm p_x+\rm p_y-\rm p_z)</math> | |||
|- | |||
| || sp3-4 || <math>\frac{1}{2}(\rm s-\rm p_x-\rm p_y+\rm p_z)</math> | |||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |||
| sp3d || sp3d-1 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x+\frac{1}{\sqrt 2}\rm p_y</math> | |||
|- | |||
| || sp3d-2 || <math>\frac{1}{\sqrt 3}\rm s-\frac{1}{\sqrt 6}\rm p_x-\frac{1}{\sqrt 2}\rm p_y</math> | |||
|- | |||
| || sp3d-3 || <math>\frac{1}{\sqrt 3}\rm s+\frac{2}{\sqrt 6}\rm p_x</math> | |||
|- | |||
| || sp3d-4 || <math>\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 2}\rm d_{z^2}</math> | |||
|- | |||
| || sp3d-5 || <math>-\frac{1}{\sqrt 2}\rm p_z+\frac{2}{\sqrt 2}\rm d_{z^2}</math> | |||
|- | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|style="border-bottom:1px solid"| | |||
|- | |||
| sp3d2 || sp3d2-1 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_x-\frac{1}{\sqrt 12}\rm d_{z^2}+\frac{1}{2}\rm d_{x^2-y^2}</math> | |||
|- | |||
| || sp3d2-2 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_x-\frac{1}{\sqrt 12}\rm d_{z^2}+\frac{1}{2}\rm d_{x^2-y^2}</math> | |||
|- | |||
| || sp3d2-3 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_y-\frac{1}{\sqrt 12}\rm d_{z^2}-\frac{1}{2}\rm d_{x^2-y^2}</math> | |||
|- | |||
| || sp3d2-4 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_y-\frac{1}{\sqrt 12}\rm d_{z^2}-\frac{1}{2}\rm d_{x^2-y^2}</math> | |||
|- | |||
| || sp3d2-5 || <math>\frac{1}{\sqrt 6}\rm s-\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 3}\rm d_{z^2}</math> | |||
|- | |||
| || sp3d2-6 || <math>\frac{1}{\sqrt 6}\rm s+\frac{1}{\sqrt 2}\rm p_z+\frac{1}{\sqrt 3}\rm d_{z^2}</math> | |||
|} | |} |
Latest revision as of 11:03, 21 June 2018
real spherical harmonics l m Name Ylm 0 1 s 1 -1 py 1 0 pz 1 1 px 2 -2 dxy 2 -1 dyz 2 0 dz2 2 1 dxz 2 2 dx2-y2 3 -3 fy(3x2-y2) 3 -2 fxyz 3 -1 fyz2 3 0 fz3 3 1 fxz2 3 2 fz(x2-y2) 3 3 fx(x2-3y2)
hybrid angular functions sp sp-1 sp-2 sp2 sp2-1 sp2-2 sp2-2 sp3 sp3-1 sp3-2 sp3-2 sp3-4 sp3d sp3d-1 sp3d-2 sp3d-3 sp3d-4 sp3d-5 sp3d2 sp3d2-1 sp3d2-2 sp3d2-3 sp3d2-4 sp3d2-5 sp3d2-6