Many-body dispersion energy: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 29: | Line 29: | ||
*Analytical gradients of the energy are implemented (fore details see reference {{cite|bucko:jpcm:16}}) and hence the atomic and lattice relaxations can be performed. | *Analytical gradients of the energy are implemented (fore details see reference {{cite|bucko:jpcm:16}}) and hence the atomic and lattice relaxations can be performed. | ||
*Due to the long-range nature of dispersion interactions, the convergence of energy with respect to the number of k-points should be carefully examined. | *Due to the long-range nature of dispersion interactions, the convergence of energy with respect to the number of k-points should be carefully examined. | ||
*A default value for the free-parameter of this method is available only for the PBE ({{TAG|VDW_SR}}{{=}}0.83), PBE0 ({{TAG|VDW_SR}}{{=}}0.85), HSE06 | *A default value for the free-parameter of this method is available only for the PBE ({{TAG|VDW_SR}}{{=}}0.83), PBE0 ({{TAG|VDW_SR}}{{=}}0.85), HSE06 ({{TAG|VDW_SR}}{{=}}0.85), B3LYP ({{TAG|VDW_SR}}{{=}}0.64), and SCAN ({{TAG|VDW_SR}}{{=}}1.12) functionals. If any other functional is used, the value of {{TAG|VDW_SR}} must be specified in the {{TAG|INCAR}} file.}} | ||
== Related tags and articles == | == Related tags and articles == | ||
Line 48: | Line 48: | ||
---- | ---- | ||
[[Category:Exchange-correlation functionals]][[Category:van der Waals functionals]][[Category:Theory]] | [[Category:Exchange-correlation functionals]][[Category:van der Waals functionals]][[Category:Theory]] |
Latest revision as of 12:02, 20 May 2024
The many-body dispersion energy method (MBD@rsSCS) of Tkatchenko et al.[1][2] is based on the random-phase expression for the correlation energy
whereby the response function is approximated by a sum of atomic contributions represented by quantum harmonic oscillators. The expression for the dispersion energy used in the VASP k-space implementation of the MBD@rsSCS method (see reference [3] for details) is as follows:
where is the frequency-dependent polarizability matrix and is the long-range interaction tensor, which describes the interaction of the screened polarizabilities embedded in the system in a given geometrical arrangement. The components of are obtained using an atoms-in-molecule approach as employed in the pairwise Tkatchenko-Scheffler method (see references [2][3] for details). The input reference data for non-interacting atoms can be optionally defined via the parameters VDW_ALPHA, VDW_C6, and VDW_R0 (described by the Tkatchenko-Scheffler method). This method has one free parameter () that must be adjusted for each exchange-correlation functional. The default value of =0.83 corresponds to the PBE functional (GGA=PE). If another functional is used, the value of must be specified via VDW_SR in the INCAR file. The MBD@rsSCS method is invoked by setting IVDW=202. Optionally, the following parameters can be user-defined (the given values are the default ones):
- VDW_SR=0.83 : scaling parameter
- LVDWEXPANSION=.FALSE. : writes the two- to six-body contributions to the MBD dispersion energy in the OUTCAR (LVDWEXPANSION=.TRUE.)
- LSCSGRAD=.TRUE. : compute gradients (or not)
- VDW_ALPHA, VDW_C6, VDW_R0 : atomic reference (see also Tkatchenko-Scheffler method)
- ITIM=-1: if set to +1, apply eigenvalue remapping to avoid unphysical cases where the eigenvalues of the matrix
are non-positive, see reference[4] for details
Details of the implementation of the MBD@rsSCS method in VASP are presented in reference [3].
Mind:
|
Related tags and articles
VDW_ALPHA, VDW_C6, VDW_R0, VDW_SR, LVDWEXPANSION, LSCSGRAD, IVDW, Tkatchenko-Scheffler method, Self-consistent screening in Tkatchenko-Scheffler method, Tkatchenko-Scheffler method with iterative Hirshfeld partitioning, Many-body dispersion energy with fractionally ionic model for polarizability
References
- ↑ A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
- ↑ a b A. Ambrosetti, A. M. Reilly, and R. A. DiStasio Jr., J. Chem. Phys. 140, 018A508 (2014).
- ↑ a b c d T. Bučko, S. Lebègue, T. Gould, and J. G. Ángyán, J. Phys.: Condens. Matter 28, 045201 (2016).
- ↑ T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, J. Chem. Theory Comput. 12, 5920 (2016).