DFT-ulg: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(31 intermediate revisions by the same user not shown)
Line 1: Line 1:
In the DFT-ulg method of Grimme{{cite|kim:jpcl:2012}}, the correction term takes the form:
In the DFT-ulg method of Kim et al.{{cite|kim:jpcl:2012}}, the correction term takes the form:


:<math>E_{\mathrm{disp}} = -\frac{1}{2}  \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}}  \sum_{\mathbf{L}} {}^{\prime}  \frac{C_{6ij}}{r_{ij,L}^{6}}  f_{d,6}({r}_{ij,\mathbf{L}}) </math>
:<math>E_{\mathrm{disp}} = -\frac{1}{2}  s_{lg}\sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}}  \sum_{\mathbf{L}} {}^{\prime}  \frac{C_{6ij}}{r_{ij,L}^{6}+b_{lg}(R_{0}^{ij})^{6}} </math>


where the first two summations are over all <math>N_{at}</math> atoms in the unit cell and the third summation is over all translations of the unit cell <math>{\mathbf{L}}=(l_1,l_2,l_3)</math> where the prime indicates that <math>i\not=j</math> for <math>{\mathbf{L}}=0</math>. <math>C_{6ij}</math> denotes the dispersion coefficient for the atom pair <math>ij</math>, <math>{r}_{ij,\mathbf{L}}</math> is the distance between atom <math>i</math> located in the reference cell <math>\mathbf{L}=0</math> and atom <math>j</math> in the cell <math>L</math> and the term <math>f(r_{ij})</math> is a damping function whose role is to scale the force field such as to minimize the contributions from interactions within typical bonding distances. In practice, the terms in the equation for <math>E_{\mathrm{disp}}</math> corresponding to interactions over distances longer than a certain suitably chosen cutoff radius ({{TAG|VDW_RADIUS}}, see below) contribute only negligibly to  <math>E_{\mathrm{disp}}</math> and can be ignored. Parameters <math>C_{6ij}</math> and <math>R_{0ij}</math> are computed using the following combination rules:
where the first two summations are over all <math>N_{at}</math> atoms in the unit cell and the third summation is over all translations of the unit cell <math>{\mathbf{L}}=(l_1,l_2,l_3)</math> where the prime indicates that <math>i\not=j</math> for <math>{\mathbf{L}}=0</math>. <math>C_{6ij}</math> denotes the dispersion coefficient for the atom pair <math>ij</math>, <math>{r}_{ij,\mathbf{L}}</math> is the distance between atom <math>i</math> located in the reference cell <math>\mathbf{L}=0</math> and atom <math>j</math> in the cell <math>L</math>. The DFT-ulg method can be activated by setting {{TAG|IVDW}}=''3''. The parameters in the DFT-ulg method (see Ref. {{cite|kim:jpcl:2012}} for details) that can be modified are listed below.
 
:<math>C_{6ij} = \sqrt{C_{6ii} C_{6jj}}</math>
 
and
 
:<math>R_{0ij} = R_{0i}+ R_{0j}. </math>
 
The values for <math>C_{6ii}</math> and <math>R_{0i}</math> are tabulated for each element and are insensitive to the particular chemical situation (for instance, <math>C_6</math> for carbon in methane takes exactly the same value as that for C in benzene within this approximation). In the DFT-D2 method, a Fermi-type damping function is used:
 
:<math>f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}}</math>
 
whereby the global scaling parameter <math>s_6</math> has been optimized for several different DFT functionals such as PBE (<math>s_6=0.75</math>), BLYP (<math>s_6=1.2</math>) or B3LYP (<math>s_6=1.05</math>). The parameter <math>s_R</math> is usually fixed at 1.00. The DFT-D2 method can be activated by setting {{TAG|IVDW}}=''1|10'' or by specifying {{TAG|LVDW}}=''.TRUE.'' (this parameter is obsolete as of VASP.5.3.3). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the given values are the default ones):


*{{TAG|VDW_RADIUS}}=50.0 : cutoff radius (in <math>\AA</math>) for pair interactions
*{{TAG|VDW_RADIUS}}=50.0 : cutoff radius (in <math>\AA</math>) for pair interactions
*{{TAG|VDW_S6}}=0.75 : global scaling factor <math>s_6</math> (available in VASP.5.3.4 and later)
*{{TAG|VDW_S6}}=0.7012 : global scaling parameter <math>s_{lg}</math>
*{{TAG|VDW_SR}}=1.00 : scaling factor <math>s_R</math> (available in VASP.5.3.4 and later)
*{{TAG|VDW_D}}=0.6966 : universal correction parameter <math>b_{lg}</math>
*{{TAG|VDW_SCALING}}=0.75 : the same as {{TAG|VDW_S6}} (obsolete as of VASP.5.3.4)
*{{TAG|VDW_D}}=20.0 : damping parameter <math>d</math>
*{{TAG|VDW_C6}}=[real array] : <math>C_6</math> parameters (<math>\mathrm{Jnm}^{6}\mathrm{mol}^{-1}</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|VDW_C6}}=[real array] : <math>C_6</math> parameters (<math>\mathrm{Jnm}^{6}\mathrm{mol}^{-1}</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|VDW_R0}}=[real array] : <math>R_0</math> parameters (<math>\AA</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|VDW_R0}}=[real array] : <math>R_0</math> parameters (<math>\AA</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|LVDW_EWALD}}=''.FALSE.'' : the lattice summation in <math>E_{\mathrm{disp}}</math> expression is computed by means of Ewald's summation (''.TRUE.'' ) or via a real space summation over all atomic pairs within cutoff radius {{TAG|VDW_RADIUS}} (''.FALSE.'').  (available in VASP.5.3.4 and later)
*{{TAG|LVDW_EWALD}}=''.FALSE.'' : the lattice summation in <math>E_{\mathrm{disp}}</math> expression is computed by means of Ewald's summation (''.TRUE.'' ) or via a real space summation over all atomic pairs within cutoff radius {{TAG|VDW_RADIUS}} (''.FALSE.'').  (available in VASP.5.3.5 and later)
 
The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference {{cite|bucko:jpca:10}}.
 
{{NB|important|It is recommended to use the more advanced and more accurate method {{TAG|DFT-D3}}.{{cite|grimme:jcp:10}}}}


{{NB|mind|The defaults for {{TAG|VDW_C6}} and {{TAG|VDW_R0}} are defined only for elements in the first five rows of the periodic table (i.e. H-Xe). If the system contains other elements the user has to define these parameters in {{TAG|INCAR}}.}}
{{NB|mind|The default value of the parameter <math>s_{lg}</math> (0.7012) was determined in conjunction with the PBE {{TAG|GGA}} functional{{cite|kim:jpcl:2012}}. Therefore, it is not recommended to use the DFT-ulg dispersion correction with a {{TAG|GGA}} functional other than PBE, unless <math>s_{lg}</math> is reoptimized.}}
{{NB|mind|The defaults for parameters controlling the damping function ({{TAG|VDW_S6}}, {{TAG|VDW_SR}}, {{TAG|VDW_D}}) are available for the PBE ({{TAG|GGA}}{{=}}PE), BP, revPBE, PBE0, TPSS, and B3LYP functionals. If any other functional is used in a DFT-D2 calculation, the value of {{TAG|VDW_S6}} (or {{TAG|VDW_SCALING}} in versions before VASP.5.3.4) has to be defined in {{TAG|INCAR}}.}}
{{NB|mind|As of VASP.5.3.4, the default value for {{TAG|VDW_RADIUS}} has been increased from 30 to 50 <math>\AA</math>.}}
{{NB|mind|Ewald's summation in the calculation of <math>E_{\mathrm{disp}}</math> calculation (controlled via {{TAG|LVDW_EWALD}}) is implemented according to reference {{cite|kerber:jcc:08}} and is available as of VASP.5.3.4.}}


== Related tags and articles ==
== Related tags and articles ==
{{TAG|VDW_RADIUS}},
{{TAG|VDW_RADIUS}},
{{TAG|VDW_S6}},
{{TAG|VDW_S6}},
{{TAG|VDW_SR}},
{{TAG|VDW_SCALING}},
{{TAG|VDW_D}},
{{TAG|VDW_D}},
{{TAG|VDW_C6}},
{{TAG|VDW_C6}},
Line 45: Line 22:
{{TAG|LVDW_EWALD}},
{{TAG|LVDW_EWALD}},
{{TAG|IVDW}},
{{TAG|IVDW}},
{{TAG|DFT-D3}},
{{TAG|DFT-D2}}
{{TAG|Tkatchenko-Scheffler method}},
{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}},
{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}},
{{TAG|Many-body dispersion energy}},
{{TAG|dDsC dispersion correction}}


== References ==
== References ==

Latest revision as of 12:46, 2 February 2023

In the DFT-ulg method of Kim et al.[1], the correction term takes the form:

where the first two summations are over all atoms in the unit cell and the third summation is over all translations of the unit cell where the prime indicates that for . denotes the dispersion coefficient for the atom pair , is the distance between atom located in the reference cell and atom in the cell . The DFT-ulg method can be activated by setting IVDW=3. The parameters in the DFT-ulg method (see Ref. [1] for details) that can be modified are listed below.

  • VDW_RADIUS=50.0 : cutoff radius (in ) for pair interactions
  • VDW_S6=0.7012 : global scaling parameter
  • VDW_D=0.6966 : universal correction parameter
  • VDW_C6=[real array] : parameters () for each species defined in the POSCAR file
  • VDW_R0=[real array] : parameters () for each species defined in the POSCAR file
  • LVDW_EWALD=.FALSE. : the lattice summation in expression is computed by means of Ewald's summation (.TRUE. ) or via a real space summation over all atomic pairs within cutoff radius VDW_RADIUS (.FALSE.). (available in VASP.5.3.5 and later)


Mind: The default value of the parameter (0.7012) was determined in conjunction with the PBE GGA functional[1]. Therefore, it is not recommended to use the DFT-ulg dispersion correction with a GGA functional other than PBE, unless is reoptimized.

Related tags and articles

VDW_RADIUS, VDW_S6, VDW_D, VDW_C6, VDW_R0, LVDW_EWALD, IVDW, DFT-D2

References