Biased molecular dynamics: Difference between revisions

From VASP Wiki
No edit summary
Tag: New redirect
(35 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
#REDIRECT [[:Category:Biased molecular dynamics]]
The probability density for a geometric parameter ξ of the system driven by a Hamiltonian:
:<math>
H(q,p) = T(p) + V(q), \;
</math>
with ''T''(''p''), and ''V''(''q'') being kinetic, and potential energies, respectively, can be written as:
:<math>
P(\xi_i)=\frac{\int\delta\Big(\xi(q)-\xi_i\Big) \exp\left\{-H(q,p)/k_B\,T\right\} dq\,dp}{\int  \exp\left\{-H(q,p)/k_B\,T\right\}dq\,dp} =
\langle\delta\Big(\xi(q)-\xi_i\Big)\rangle_{H}.
</math>
The term <math>\langle X \rangle_H</math> stands for a thermal average of quantity ''X'' evaluated for the system driven by the Hamiltonian ''H''.
 
If the system is modified by adding a bias potential <math>\tilde{V}(\xi)</math> acting only on a selected internal parameter of the system &xi;=&xi;(''q''), the Hamiltonian takes a form:
:<math>
\tilde{H}(q,p) = H(q,p) + \tilde{V}(\xi),
</math>
and the probability density of &xi; in the biased ensemble is:
:<math>
\tilde{P}(\xi_i)= \frac{\int  \delta\Big(\xi(q)-\xi_i\Big) \exp\left\{-\tilde{H}(q,p)/k_B\,T\right\} dq\,dp}{\int  \exp\left\{-\tilde{H}(q,p)/k_B\,T\right\}dq\,dp} =  \langle\delta\Big(\xi(q)-\xi_i\Big)\rangle_{\tilde{H}}
</math>
It can be shown that the biased and unbiased averages are related via a simple formula:
:<math>
P(\xi_i)=\tilde{P}(\xi_i) \frac{\exp\left\{\tilde{V}(\xi)/k_B\,T\right\}}{\langle \exp\left\{\tilde{V}(\xi)/k_B\,T\right\} \rangle_{\tilde{H}}}.
</math>
More generally, an observable <math>\langle A \rangle_{H}</math>:
:<math>
\langle A \rangle_{H} = \frac{\int  A(q) \exp\left\{-H(q,p)/k_B\,T\right\} dq\,dp}{\int  \exp\left\{-H(q,p)/k_B\,T\right\}dq\,dp}
</math>
can be expressed in terms of thermal averages within the biased ensemble:
:<math>
\langle A \rangle_{H} =\frac{\langle A(q) \,\exp\left\{\tilde{V}(\xi)/k_B\,T\right\} \rangle_{\tilde{H}}}{\langle \exp\left\{\tilde{V}(\xi)/k_B\,T\right\} \rangle_{\tilde{H}}}.
</math>
Simulation methods such as umbrella sampling<ref name="Torrie77"/> use a bias potential to enhance sampling of &xi; in regions with low ''P''(&xi;<sub>''i''</sub>) such as transition regions of chemical
reactions.
The correct distributions are recovered afterwards using the equation for <math>\langle A \rangle_{H}</math> above.
 
A more detailed description of the method can be found in Ref.<ref name="FrenkelSmit"/>.
Biased molecular dynamics can be used also to introduce soft geometric constraints in which the controlled geometric parameter is not strictly constant, instead it oscillates in a narrow interval
of values.
 
== Supported types of bias potentials ==
Presently, the following types of bias potential are supported:
 
*Gauss function
:<math>
V_{bias}(\xi) = h\,\text{exp}\left [-\frac{(\xi(q)-\xi_0)^2}{2w^2}  \right ], \;
</math>
 
*harmonic potential
:<math>
V_{bias}(\xi) = \frac{1}{2}\kappa (\xi(q)-\xi_0)^2 \;
</math>
 
 
*Fermi function
:<math>
V_{bias}(\xi) = \frac{A}{1+\text{exp}\left [-D\frac{\xi(q)}{\xi_0} -1 \right ]} \;
</math>
 
== Andersen thermostat ==
 
* For a biased molecular dynamics run with Andersen thermostat, one has to:
#Set the standard MD-related tags: {{TAG|IBRION}}=0, {{TAG|TEBEG}}, {{TAG|POTIM}}, and {{TAG|NSW}}
#Set {{TAG|MDALGO}}=1 ({{TAG|MDALGO}}=11 in VASP 5.x), and choose an appropriate setting for {{TAG|ANDERSEN_PROB}}
#In order to avoid updating of the bias potential, set {{TAG|HILLS_BIN}}={{TAG|NSW}}
#Define collective variables in the {{FILE|ICONST}}-file, and set the <tt>STATUS</tt> parameter for the collective variables to 5
#Define the bias potential in the {{FILE|PENALTYPOT}}-file
 
== Nose-Hoover thermostat ==
 
* For a biased molecular dynamics run with Nose-Hoover thermostat, one has to:
#Set the standard MD-related tags: {{TAG|IBRION}}=0, {{TAG|TEBEG}}, {{TAG|POTIM}}, and {{TAG|NSW}}
#Set {{TAG|MDALGO}}=2 ({{TAG|MDALGO}}=21 in VASP 5.x), and choose an appropriate setting for {{TAG|SMASS}}
#In order to avoid updating of the bias potential, set {{TAG|HILLS_BIN}}={{TAG|NSW}}
#Define collective variables in the {{FILE|ICONST}}-file, and set the <tt>STATUS</tt> parameter for the collective variables to 5
#Define the bias potential in the {{FILE|PENALTYPOT}}-file
 
The values of all collective variables for each MD step are listed in the {{FILE|REPORT}}-file, check the lines after the string <tt>Metadynamics</tt>.
 
== References ==
<references>
<ref name="Torrie77">[http://dx.doi.org/10.1016/0021-9991(77)90121-8 G. M. Torrie and J. P. Valleau, J. Comp. Phys. 23, 187 (1977).]</ref>
<ref name="FrenkelSmit">D. Frenkel and B. Smit, ''Understanding molecular simulations: from algorithms to applications'', Academic Press: San Diego, 2002.</ref>
</references>
----
 
[[Category:Molecular dynamics]][[Category:Biased molecular dynamics]][[Category:Theory]][[Category:Howto]]

Revision as of 09:38, 24 April 2023