ML LHEAT: Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{TAGDEF| | {{DISPLAYTITLE:ML_LHEAT}} | ||
{{TAGDEF|ML_LHEAT|[logical]|.FALSE.}} | |||
Description: This | Description: This tag specifies whether the heat flux is calculated or not in the machine learning force field method. | ||
---- | ---- | ||
The heat flux within machine learning force fields | The heat flux within machine learning force fields is decomposed into atomic contributions written as | ||
<math> | <math> | ||
Line 22: | Line 23: | ||
<math> | <math> | ||
m_{i} \frac{d \mathbf{v}_{i}}{dt} = - \sum\limits_{j=1}{N_{a}} \nabla_{i} U_{j} | m_{i} \frac{d \mathbf{v}_{i}}{dt} = - \sum\limits_{j=1}^{N_{a}} \nabla_{i} U_{j} | ||
</math> | |||
the heat flux can be simplified to | |||
<math> | |||
\mathbf{q}(t) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} - \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \mathbf{r}_{i} \left( \mathbf{v}_{i} \cdot \nabla_{i} U_{j} \right) + \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \mathbf{r}_{i} \left( \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} + \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \left( \mathbf{r}_{i} - \mathbf{r}_{j} \right) \left( \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right). | |||
</math> | </math> | ||
Line 38: | Line 45: | ||
The heat flux is written to the file {{TAG|ML_HEAT}}. | The heat flux is written to the file {{TAG|ML_HEAT}}. | ||
== Related | == Related tags and articles == | ||
{{TAG| | {{TAG|ML_LMLFF}}, {{TAG|ML_LEATOM}} | ||
{{sc| | {{sc|ML_LHEAT|Examples|Examples that use this tag}} | ||
---- | ---- | ||
[[Category:INCAR]][[Category:Machine | [[Category:INCAR tag]][[Category:Machine-learned force fields]] |
Latest revision as of 07:24, 10 May 2022
ML_LHEAT = [logical]
Default: ML_LHEAT = .FALSE.
Description: This tag specifies whether the heat flux is calculated or not in the machine learning force field method.
The heat flux within machine learning force fields is decomposed into atomic contributions written as
where , and denote the position vector, velocity and energy of atom , respectively. The number of atoms in the system is denoted by . The heat flux can be further rewritten as
Using the equation of motions
the heat flux can be simplified to
Finally (in a post-processing step), the thermal conductivity at temperature in the Green-Kubo formalism can be calculated from the correlation of the heat flux as
where and denotes the volume of the system and the Boltzmann constant, respectively.
The heat flux is written to the file ML_HEAT.